No image available
by Rajendra Vaidya ยท 2007
ISBN: Unavailable
Category: Unavailable
Page count: 198
Corrosion of distribution system piping and home plumbing materials is a major concern in the water community. Iron release adverse affects aesthetic water quality and the release of copper and lead is regulated by the Lead and Copper rule (LCR) and can adversely affect consumer health. Corrosion control is typically done by pH regulation and/or addition of corrosion inhibitors. Monitoring of corrosion control is typically done after the fact by monitoring metal release, functional group concentration of the selected chemical species or water quality. Hence, the associated laboratory analyses create a significant delay prior to the assessment of corrosion in drinking water systems. As corrosion in drinking water systems is fundamentally an electrochemical process, measurement of the electrical phenomena associated with corrosion can be use for real-time corrosion monitoring. This dissertation focuses on using parameters associated with electrochemical corrosion monitoring (EN) measurements in a field facility to predict and control the release of Iron, Copper and Lead in finished waters produced from ground, surface and saline sources with and without usage of corrosion inhibitors. EN data has not been used previously to correlate water quality and metal release; hence the use of EN data for corrosion control in drinking water systems has not been developed or demonstrated.