No image available
by R. E. Turner, R. Wallace, K. M. Campbell, O. L. Landen, S. H. Glenzer, S. W. Pollaine, P. A. Amendt, E. L. Dewalds ยท 2003
ISBN: Unavailable
Category: Unavailable
Page count: Unavailable
Ignition hohlraum designs use low Z gas fill to slow down the inward progress of high Z ablated plasma from the hohlraum walls preventing large laser spot motion and capsule drive asymmetries. In order to optimize the ignition design, the gas hydro-coupling effect to a fusion capsule asymmetry is presently being assessed in experiments at the Omega laser facility with gas filled hohlraums and foam balls. Our experiments measure the effects of the pressure spike that is generated by direct gas heating by the drive laser beams on the capsule surrogate for various hohlraum gas fill densities (0-2.5 mg/cc). To isolate the effect of the gas-hydro coupling pressure, we have begun by using plastic ''hohlraums'' to reduce the x-ray ablation pressure. The foam ball images measured by x-ray backlighting show increasing pole-hot pressure asymmetry for increasing gas pressure. In addition, the gas hydrodynamics is studied by imaging of a low concentration Xe gas fill dopant. The gas fill self-emission. shows the early pressure spike and its propagation towards the foam ball, as well as the gas stagnation on the holraum axis at later times, both contributing to the capsule asymmetry. These first gas hydro-coupling results are compared to LASNEX simulations.