· 2007
The search for life in the solar system and beyond has to date been governed by a model based on what we know about life on Earth (terran life). Most of NASA's mission planning is focused on locations where liquid water is possible and emphasizes searches for structures that resemble cells in terran organisms. It is possible, however, that life exists that is based on chemical reactions that do not involve carbon compounds, that occurs in solvents other than water, or that involves oxidation-reduction reactions without oxygen gas. To assist NASA incorporate this possibility in its efforts to search for life, the NRC was asked to carry out a study to evaluate whether nonstandard biochemistry might support life in solar system and conceivable extrasolar environments, and to define areas to guide research in this area. This book presents an exploration of a limited set of hypothetical chemistries of life, a review of current knowledge concerning key questions or hypotheses about nonterran life, and suggestions for future research.
· 2013
Spurred on by new discoveries and rapid technological advances, the capacity for life science research is expanding across the globe-and with it comes concerns about the unintended impacts of research on the physical and biological environment, human well-being, or the deliberate misuse of knowledge, tools, and techniques to cause harm. This report describes efforts to address dual use issues by developing institutes around the world that will help life sciences faculty learn to teach about the responsible conduct of science. Based on the successful National Academies Summer Institute for Undergraduate Biology Education and on previous NRC reports on effective methods for teaching about dual use issues, the report's authoring committee designed a general framework for the faculty institutes and chose the Middle East-North Africa (MENA) region to test a prototype faculty institute. In September 2012, the first Institute was held in Aqaba, Jordan, bringing together 28 participants from Algeria, Egypt, Jordan, Libya, and Yemen to engage with effective, evidence-based teaching methods, develop curricular materials for use in their own classrooms, and become community leaders on dual use and related topics. Developing Capacities for Teaching Responsible Science in the MENA Region: Refashioning Scientific Dialogue offers insights from the institute that will help in the design and implementation of future programs in the MENA region, and in other parts of the world.
· 2005
In order to answer important questions about ecosystems and biodiversity, scientists can look to the past geological recordâ€"which includes fossils, sediment and ice cores, and tree rings. Because of recent advances in earth scientists' ability to analyze biological and environmental information from geological data, the National Science Foundation and the U.S. Geological Survey asked a National Research Council (NRC) committee to assess the scientific opportunities provided by the geologic record and recommend how scientists can take advantage of these opportunities for the nation's benefit. The committee identified three initiatives for future research to be developed over the next decade: (1) use the geological record as a "natural laboratory" to explore changes in living things under a range of past conditions, (2) use the record to better predict the response of biological systems to climate change, and (3) use geologic information to evaluate the effects of human and non-human factors on ecosystems. The committee also offered suggestions for improving the field through better training, improved databases, and additional funding.
· 2012
Evolution is the central unifying theme of biology. Yet today, more than a century and a half after Charles Darwin proposed the idea of evolution through natural selection, the topic is often relegated to a handful of chapters in textbooks and a few class sessions in introductory biology courses, if covered at all. In recent years, a movement has been gaining momentum that is aimed at radically changing this situation. On October 25-26, 2011, the Board on Life Sciences of the National Research Council and the National Academy of Sciences held a national convocation in Washington, DC, to explore the many issues associated with teaching evolution across the curriculum. Thinking Evolutionarily: Evolution Education Across the Life Sciences: Summary of a Convocation summarizes the goals, presentations, and discussions of the convocation. The goals were to articulate issues, showcase resources that are currently available or under development, and begin to develop a strategic plan for engaging all of the sectors represented at the convocation in future work to make evolution a central focus of all courses in the life sciences, and especially into introductory biology courses at the college and high school levels, though participants also discussed learning in earlier grades and life-long learning. Thinking Evolutionarily: Evolution Education Across the Life Sciences: Summary of a Convocation covers the broader issues associated with learning about the nature, processes, and limits of science, since understanding evolutionary science requires a more general appreciation of how science works. This report explains the major themes that recurred throughout the convocation, including the structure and content of curricula, the processes of teaching and learning about evolution, the tensions that can arise in the classroom, and the target audiences for evolution education.
· 1986
This comprehensive book examines the recent research investigating the characteristics and composition of different types of environmental tobacco smoke (ETS) and discusses possible health effects of ETS. The volume presents an overview of methods used to determine exposures to environmental smoke and reviews both chronic and acute health effects. Many recommendations are made for areas of further research, including the differences between smokers and nonsmokers in absorbing, metabolizing, and excreting the components of ETS, and the possible effects of ETS exposure during childhood and fetal life.
· 2019
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.
· 2015
Does the public trust science? Scientists? Scientific organizations? What roles do trust and the lack of trust play in public debates about how science can be used to address such societal concerns as childhood vaccination, cancer screening, and a warming planet? What could happen if social trust in science or scientists faded? These types of questions led the Roundtable on Public Interfaces of the Life Sciences of the National Academies of Sciences, Engineering, and Medicine to convene a 2-day workshop on May 5-6, 2015 on public trust in science. This report explores empirical evidence on public opinion and attitudes toward life sciences as they relate to societal issues, whether and how contentious debate about select life science topics mediates trust, and the roles that scientists, business, media, community groups, and other stakeholders play in creating and maintaining public confidence in life sciences. Does the Public Trust Science? Trust and Confidence at the Interfaces of the Life Sciences and Society highlights research on the elements of trust and how to build, mend, or maintain trust; and examine best practices in the context of scientist engagement with lay audiences around social issues.
· 2011
For many years, experiments using chimpanzees have been instrumental in advancing scientific knowledge and have led to new medicines to prevent life-threatening and debilitating diseases. However, recent advances in alternate research tools have rendered chimpanzees largely unnecessary as research subjects. The Institute of Medicine, in collaboration with the National Research Council, conducted an in-depth analysis of the scientific necessity for chimpanzees in NIH-funded biomedical and behavioral research. The committee concludes that while the chimpanzee has been a valuable animal model in the past, most current biomedical research use of chimpanzees is not necessary, though noted that it is impossible to predict whether research on emerging or new diseases may necessitate chimpanzees in the future.
· 2012
In many countries, colleges and universities are where the majority of innovative research is done; in all cases, they are where future scientists receive both their initial training and their initial introduction to the norms of scientific conduct regardless of their eventual career paths. Thus, institutions of higher education are particularly relevant to the tasks of education on research with dual use potential, whether for faculty, postdoctoral researchers, graduate and undergraduate students, or technical staff. Research in the Life Sciences with Dual Use Potential describes the outcomes of the planning meeting for a two-year project to develop a network of faculty who will be able to teach the challenges of research in the life sciences with dual use potential. Faculty will be able to incorporate such concepts into their teaching and research through exposure to the tenets of responsible conduct of research in active learning teaching methods. This report is intended to provide guidelines for that effort and to be applicable to any country wishing to adopt this educational model that combines principles of active learning and training with attention to norms of responsible science. The potential audiences include a broad array of current and future scientists and the policymakers who develop laws and regulations around issues of dual use.
· 2011
During the last decade, national and international scientific organizations have become increasingly engaged in considering how to respond to the biosecurity implications of developments in the life sciences and in assessing trends in science and technology (S&T) relevant to biological and chemical weapons nonproliferation. The latest example is an international workshop, Trends in Science and Technology Relevant to the Biological Weapons Convention, held October 31 - November 3, 2010 at the Institute of Biophysics of the Chinese Academy of Sciences in Beijing. Life Sciences and Related Fields summarizes the workshop, plenary, and breakout discussion sessions held during this convention. Given the immense diversity of current research and development, the report is only able to provide an overview of the areas of science and technology the committee believes are potentially relevant to the future of the Biological and Toxic Weapons Convention (BWC), although there is an effort to identify areas that seemed particularly ripe for further exploration and analysis. The report offers findings and conclusions organized around three fundamental and frequently cited trends in S&T that affect the scope and operation of the convention: The rapid pace of change in the life sciences and related fields; The increasing diffusion of life sciences research capacity and its applications, both internationally and beyond traditional research institutions; and The extent to which additional scientific and technical disciplines beyond biology are increasingly involved in life sciences research. The report does not make recommendations about policy options to respond to the implications of the identified trends. The choice of such responses rests with the 164 States Parties to the Convention, who must take into account multiple factors beyond the project's focus on the state of the science.