No image available
No image available
· 2005
In recent DIII-D experiments, we concentrated on extending the operating range and improving the overall performance of quiescent H-mode (QH) plasmas. The QH-mode offers an attractive, high-performance operating mode for burning plasmas due to the absence of pulsed edge-localized-mode-driven losses to the divertor (ELMs). Using counter neutral-beam injection (NBI), we achieve steady plasma conditions with the presence of an edge harmonic oscillation (EHO) replacing the ELMs and providing control of the edge pedestal density. These conditions have been maintained for greater than 4s ({approx}30 energy confinement times, {tau}{sub E}, and 2 current relaxation times, {tau}{sub R} [1]), and often limited only by the duration of auxiliary heating. We discuss results of these recent experiments where we use triangularity ramping to increase the density, neutral beam power ramps to increase the stored energy, injection of rf power at the electron cyclotron (EC) frequency to control density profile peaking in the core, and control of startup conditions to completely eliminate the transient ELMing phase.
No image available
· 2005
Quiescent double barrier (QDB) conditions often form when an internal transport barrier is created with high-power neutral-beam injection into a quiescent H-mode (QH) plasma. These QH-modes offer an attractive, high-performance operating scenario for burning plasma experiments due to their quasi-stationarity and lack of edge localized modes (ELMs). Our initial experiments and modeling using ECH/ECCD in QDB shots were designed to control the current profile and, indeed, we have observed a strong dependence on the q-profile when EC-power is used inside the core transport barrier region. While strong electron heating is observed with EC power injection, we also observe a drop in the other core parameters; ion temperature and rotation, electron density and impurity concentration. These dynamically changing conditions provide a rapid evolution of T{sub e} T{sub i} profiles accessible with 0.3
No image available
No image available
· 2003
We continue to explore Quiescent Double Barrier (QDB) operation on DIII-D to address issues of critical importance to internal transport barrier (ITB) plasmas. QDB plasmas exhibit both a core transport barrier and a quiescent, H-mode edge barrier. Both experiments and modeling of these plasmas are leading to an increased understanding of this regime and it's potential advantages for advanced-tokamak (AT) burning-plasma operation. These near steady plasma conditions have been maintained on DIII-D for up to 4s, times greater than 35{tau}{sub E}, and exhibit high performance with {beta}{sub N}> 2.5 and neutron production rates S{sub n} {approx} 1 x 10{sup 16}s{sup -1}. Recent experiments have been directed at exploring both the current profile modification effects of electron cyclotron current drive (ECCD) and electron cyclotron (ECH) heating-induced changes in temperature, density and impurity profiles. We use model-based analysis to determine the effects of both heating and current drive on the q-profile in these QDB plasmas. Experiments based on predictive modeling achieved a significant modification to the q-profile evolution [1] resulting from the non-inductive current drive effects due to direct ECCD and changes in the bootstrap and neutral beam current drive components. We observe that the injection of EC power inside the barrier region changes the density peaking from n{sub e}/n{sub e} = 2.1 to 1.5 accompanied by a significant reduction in the core carbon and high-Z impurities, nickel and copper.
No image available
No image available
No image available
No image available
· 1942