No image available
No image available
Background: Long sequencing reads allow increasing contiguity and completeness of fragmented, short-read-based genome assemblies by closing assembly gaps, ideally at high accuracy. While several gap-closing methods have been developed, these methods often close an assembly gap with sequence that does not accurately represent the true sequence. Findings: Here, we present DENTIST, a sensitive, highly accurate, and automated pipeline method to close gaps in short-read assemblies with long error-prone reads. DENTIST comprehensively determines repetitive assembly regions to identify reliable and unambiguous alignments of long reads to the correct loci, integrates a consensus sequence computation step to obtain a high base accuracy for the inserted sequence, and validates the accuracy of closed gaps. Unlike previous benchmarks, we generated test assemblies that have gaps at the exact positions where real short-read assemblies have gaps. Generating such realistic benchmarks for Drosophila (134 Mb genome), Arabidopsis (119 Mb), hummingbird (1 Gb), and human (3 Gb) and using simulated or real PacBio continuous long reads, we show that DENTIST consistently achieves a substantially higher accuracy compared to previous methods, while having a similar sensitivity. Conclusion: DENTIST provides an accurate approach to improve the contiguity and completeness of fragmented assemblies with long reads. DENTIST's source code including a Snakemake workflow, conda package, and Docker container is available at https://github.com/a-ludi/dentist. All test assemblies as a resource for future benchmarking are at https://bds.mpi-cbg.de/hillerlab/DENTIST/.
No image available
· 2019
Abstract: The Freiburg RNA tools webserver is a well established online resource for RNA-focused research. It provides a unified user interface and comprehensive result visualization for efficient command line tools. The webserver includes RNA-RNA interaction prediction (IntaRNA, CopraRNA, metaMIR), sRNA homology search (GLASSgo), sequence-structure alignments (LocARNA, MARNA, CARNA, ExpaRNA), CRISPR repeat classification (CRISPRmap), sequence design (antaRNA, INFO-RNA, SECISDesign), structure aberration evaluation of point mutations (RaSE), and RNA/protein-family models visualization (CMV), and other methods. Open education resources offer interactive visualizations of RNA structure and RNA-RNA interaction prediction as well as basic and advanced sequence alignment algorithms. The services are freely available at http://rna.informatik.uni-freiburg.de
No image available
· 2020
Today Only, Get this Romantic Love Story Book for just $2.99.If You Don't Have Kindle You Can Still Read This Book On Your Web Browser using Amazon Free Cloud Reader. This book has a very interesting & heart touching story. This story main character is Jennifer (Jenny), Oliver (Ollie) and Oliver dad.This love story of jenny and Oliver start from university friendship. A very interesting love story that you have not read or listen before.So start story now and read full story. Must leave comments after reading this beautiful love story.True Love Knows No BoundDownload Today This Book, " Romantic Love Story Book ", for a limited time discount of only $2.99! DON'T MISS IT AND READ ONCE MUST ALSO SHARE WITH OTHERS.
No image available
No image available
No image available
· 2009
Abstract: Alternative splicing (AS) involving NAGNAG tandem acceptors is an evolutionarily widespread class of AS. Recent predictions of alternative acceptor usage reported better results for acceptors separated by larger distances, than for NAGNAGs. To improve the latter, we aimed at the use of Bayesian networks (BN), and extensive experimental validation of the predictions. Using carefully constructed training and test datasets, a balanced sensitivity and specificity of ≥92% was achieved. A BN trained on the combined dataset was then used to make predictions, and 81% (38/47) of the experimentally tested predictions were verified. Using a BN learned on human data on six other genomes, we show that while the performance for the vertebrate genomes matches that achieved on human data, there is a slight drop for Drosophila and worm. Lastly, using the prediction accuracy according to experimental validation, we estimate the number of yet undiscovered alternative NAGNAGs. State of the art classifiers can produce highly accurate prediction of AS at NAGNAGs, indicating that we have identified the major features of the 'NAGNAG-splicing code' within the splice site and its immediate neighborhood. Our results suggest that the mechanism behind NAGNAG AS is simple, stochastic, and conserved among vertebrates and beyond
No image available
No image available