My library button
  • Book cover of Proofs from THE BOOK

    This revised and enlarged fifth edition features four new chapters, which contain highly original and delightful proofs for classics such as the spectral theorem from linear algebra, some more recent jewels like the non-existence of the Borromean rings and other surprises. From the Reviews "... Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. ... Aigner and Ziegler... write: "... all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999 "... This book is a pleasure to hold and to look at: ample margins, nice photos, instructive pictures and beautifuldrawings ... It is a pleasure to read as well: the style is clear and entertaining, the level is close to elementary, the necessary background is given separately and the proofs are brilliant. ..." LMS Newsletter, January 1999 "Martin Aigner and Günter Ziegler succeeded admirably in putting together a broad collection of theorems and their proofs that would undoubtedly be in the Book of Erdös. The theorems are so fundamental, their proofs so elegant and the remaining open questio ns so intriguing that every mathematician, regardless of speciality, can benefit from reading this book. ... " SIGACT News, December 2011.

  • Book cover of Probability and Measure Theory

    Probability and Measure Theory, Second Edition, is a text for a graduate-level course in probability that includes essential background topics in analysis. It provides extensive coverage of conditional probability and expectation, strong laws of large numbers, martingale theory, the central limit theorem, ergodic theory, and Brownian motion. Clear, readable style Solutions to many problems presented in text Solutions manual for instructors Material new to the second edition on ergodic theory, Brownian motion, and convergence theorems used in statistics No knowledge of general topology required, just basic analysis and metric spaces Efficient organization

  • Book cover of Mathematical Analysis

    Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.

  • Book cover of Elementary Analysis

    For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

  • Book cover of Differential Forms and Applications

    An application of differential forms for the study of some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames expounded by E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. This is then collated in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces.

  • Book cover of Mathematical Methods for Physicists

    This new and completely revised Fourth Edition provides thorough coverage of the important mathematics needed for upper-division and graduate study in physics and engineering. Following more than 28 years of successful class-testing, Mathematical Methods for Physicists is considered the standard text on the subject.A new chapter on nonlinear methods and chaos is included, as are revisions of the differential equations and complex variables chapters. The entire book has been made even more accessible, with special attention given to clarity, completeness, and physical motivation. It is an excellent reference apart from its course use.This revised Fourth Edition includes:Modernized terminologyGroup theoretic methods brought together and expanded in a new chapterAn entirely new chapter on nonlinear mathematical physicsSignificant revisions of the differential equations and complex variables chaptersMany new or improved exercisesForty new or improved figuresAn update of computational techniques for today's contemporary tools, such as microcomputers, Numerical Recipes, and Mathematica(r), among others

  • Book cover of An Introduction to Numerical Analysis

    Numerical analysis provides the theoretical foundation for the numerical algorithms we rely on to solve a multitude of computational problems in science. Based on a successful course at Oxford University, this book covers a wide range of such problems ranging from the approximation of functions and integrals to the approximate solution of algebraic, transcendental, differential and integral equations. Throughout the book, particular attention is paid to the essential qualities of a numerical algorithm - stability, accuracy, reliability and efficiency. The authors go further than simply providing recipes for solving computational problems. They carefully analyse the reasons why methods might fail to give accurate answers, or why one method might return an answer in seconds while another would take billions of years. This book is ideal as a text for students in the second year of a university mathematics course. It combines practicality regarding applications with consistently high standards of rigour.

  • Book cover of Course of Pure Mathematics
    G. H. Hardy

     · 2018

    This classic calculus text remains a must-read for all students of introductory mathematical analysis. Clear, rigorous explanations of the mathematics of analytical number theory and calculus cover single-variable calculus, sequences, number series, more. 1921 edition.

  • Book cover of Mathematical Aspects of Classical and Celestial Mechanics

    The main purpose of the book is to acquaint mathematicians, physicists and engineers with classical mechanics as a whole, in both its traditional and its contemporary aspects. As such, it describes the fundamental principles, problems, and methods of classical mechanics, with the emphasis firmly laid on the working apparatus, rather than the physical foundations or applications. Chapters cover the n-body problem, symmetry groups of mechanical systems and the corresponding conservation laws, the problem of the integrability of the equations of motion, the theory of oscillations and perturbation theory.

  • Book cover of Visual Complex Analysis

    Now available in paperback, this successful radical approach to complex analysis replaces the standard calculational arguments with new geometric ones. With several hundred diagrams, and far fewer prerequisites than usual, this is the first visual intuitive introduction to complex analysis. Although designed for use by undergraduates in mathematics and science, the novelty of the approach will also interest professional mathematicians.