My library button
  • Book cover of Micrographia
  • Book cover of Basic Techniques For Transmission Electron Microscopy

    Basic Techniques for Transmission Electron Microscopy describes the basic techniques for transmission electron microscopy. Preparatory procedures for both eukaryotic and prokaryotic groups are presented in a step-by-step fashion, together with special preparatory methods for plant specimens and viruses. The processing of uncommon specimens and the solution of unusual, individual problems are included. This book is comprised of seven chapters and begins with a discussion on chemical fixation, with particular reference to fixatives and the hazards, precautions, and safe handling of reagents, as well as the preparation of buffers and tissue blocks. The reader is then introduced to the standard procedure for fixation, rinsing, dehydration, and embedding. Subsequent chapters focus on sectioning, cryofixation, and cryoultramicrotomy; positive and negative staining; and the use of support films. The final chapter presents a wide variety of specimens such as algae, amoeba, anthers, actin filaments, bacteria, and cells in culture. This monograph is essentially a laboratory handbook intended for students, technicians, teachers, and research scientists in biology and medicine.

  • Book cover of Micrographia Or Some Physiological Descriptions of Minute Bodies
    Robert Hooke

     · 2007

    Facsimile-uitgave van de publicatie waarin de Britse natuuronderzoeker Robert Hooke (1635-1702) zijn observaties met de microscoop beschrijft.

  • Book cover of Scientific Literacy and the Myth of the Scientific Method

    What is science? Is social science a science? Why are more and more so-called scientific discoveries being exposed as outright frauds? Henry Bauer tackles these and many more intriguing questions that are emerging from within the academic and scientific communities and attracting attention from the popular media and the general public. Whether one is a specialist or generalist, scientist or humanist, thinker or activist, it is important to understand the place of science and technology in modern life. Popular views about the nature of science and scientific activity contain serious misconceptions that were discarded decades ago by most historians and philosophers of science. The perpetuation of these misconceptions usually surface in the form of frustrating and unproductive discussions about everything from setting policy and defining technical matters to whether one individual's point of view is "right" because it is supported by "scientific facts." According to Bauer, the most serious and widespread misconceptions are that "science" can be discussed as though all sciences share a great deal in common and as though "the scientific method" characterizes all sciences. "Science," argues Bauer, "can be understood only if one recognizes it as a quest by fallible human beings who have evolved ways of interacting that help them gain relatively objective knowledge." In other words, science is a social activity, not simply the result of impersonal methods. Concern has recently arisen over the quality of American education and our declining scientific and research orientation. Debates are emerging about what direction public universities should be taking as we head into the twenty-first century. Why and to what extent should society support basic scientific research? What should everyone in a democratic society know about science? This book will help readers come to an informed understanding about the place of science and technology in today's world.

  • Book cover of Introduction to Fluorescence

    The phenomenon known as fluorescence is now widely used in the chemical and life sciences largely due to the development of highly sophisticated fluorescent probe chemistries and the commercial availability of these probes as well as the development of novel microscopy approaches. Introduction to Fluorescence helps readers acquire a sound understanding of basic fluorescence theory and practice. It describes general principles in a straightforward way and uses examples from a variety of disciplines to demonstrate them. In color throughout, the book takes readers through the history of important discoveries to the most current advances. It introduces the fundamentals of the fluorescence phenomenon and gives detailed examples of fluorescence applications in the molecular life sciences, including biochemistry, biophysics, clinical chemistry and diagnostics, pharmaceutical science, and cell and molecular biology. The author presents the basic theories underlying the applications and offers in-depth information on practical aspects. Along with a list of references in each chapter, the text incorporates more than 250 figures that clearly illustrate the concepts and gives the chemical structures of the most widely used fluorescent molecules. In addition, the appendix provides a "Rogue’s Gallery" of the most common errors and pitfalls to avoid.

  • Book cover of Video Microscopy
    Shinya Inoué

     · 1986

    Ever since television became practical in the early 1950s, closed-circuit television (CCTV) in conjunction with the light microscope has provided large screen display, raised image contrast, and made the images formed by ultraviolet and infrared rays visible. With the introduction of large-scale integrated circuits in the last decade, TV equipment has improved by leaps and bounds, as has its application in microscopy. With modem CCTV, sometimes with the help of digital computers, we can distill the image from a scene that appears to be nothing but noise; capture fluorescence too dim to be seen; visualize structures far below the limit of resolution; crispen images hidden in fog; measure, count, and sort objects; and record in time-lapsed and high-speed sequences through the light microscope without great difficulty. In fact, video is becoming indispensable for harnessing the fullest capacity of the light microscope, a capacity that itself is much greater than could have been envisioned just a few years ago. The time seemed ripe then to review the basics of video, and of microscopy, and to examine how the two could best be combined to accomplish these tasks. The Marine Biological Laboratory short courses on Analytical and Quantitative Light Microscopy in Biology, Medicine, and the Materials Sciences, and the many inquiries I received on video microscopy, supported such an effort, and Kirk Jensen of Plenum Press persuaded me of its worth.

  • Book cover of Transmission Electron Microscopy
    Ludwig Reimer

     · 1997

    Transmission Electron Microscopy presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematic and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray micronanalysis and electron energy-loss spectroscopy are treated as analytical methods. This fourth edition includes discussions of recent progress, especially in the area of Schottky emission guns, convergent-beam electron diffraction, electron tomography, holography and the high resolution of crystal lattices.

  • Book cover of Light and Electron Microscopy

    The compound optical microscope, in its various modern forms, is probably the most familiar of all laboratory instruments and the electron microscope, once an exotic rarity, has now become a standard tool in biological and materials research. Both instruments are often used effectively with little knowledge of the relevant theory, or even of how a particular type of microscope functions. Eventually however, proper use, interpretation of images and choices of specific applications demand an understanding of fundamental principles. This book describes the principles of operation of each type of microscope currently available and of use to biomedical and materials scientists. It explains the mechanisms of image formation, contrast and its enhancement, accounts for ultimate limits on the size of observable details (resolving power and resolution) and finally provides an account of Fourier optical theory. Principles behind the photographic methods used in microscopy are also described and there is some discussion of image processing methods. The book will appeal to graduate students and researchers in the biomedical sciences, and it will be helpful to students taking a course involving the principles of microscopy.

  • Book cover of The Structure and Dynamics of Geographic Ranges

    A synthesis of present understanding of the structure of the geographic ranges of species, which is a core issue in ecology and biogeography with implications for many of the environmental issues presently facing humankind.

  • Book cover of Fixation for Electron Microscopy

    Fixation for Electron Microscopy presents how to better understand the effects of fixatives on the molecular structure of the cell. This book attempts to consider each aspect of fixation, including chemical interactions between fixatives and individual cellular substances. The chemistry of fixative interactions that are discussed in the book is based primarily on the reactions of a fixative with isolated proteins, lipids, nucleic acids, and carbohydrates. The book shows that the correct interpretation of information retrieved from electron micrographs depends on the knowledge of the basic principles underlying the fixation procedure. Also, the book presents the fixation of both eukaryotic and prokaryotic specimens. The special fixation conditions for plant specimens are discussed in detail and have been allotted a whole chapter. Also emphasized in this book is the connection between morphology and biochemical aspects of preparatory treatments and the chemical basis of the formation of artifacts. This topic is useful in understanding the modifications of cell structures introduced during their processing. A guide for recognizing and minimizing major artifacts and fixation faults that are usually encountered is also presented in the book. This valuable resource will prove useful to both students and professionals in the field of biology and clinical medicine. Specimen preservation researchers can also benefit from this book.