The increased computational power and software tools available to engineers have increased the use and dependence on modeling and computer simulation throughout the design process. These tools have given engineers the capability of designing highly complex systems and computer architectures that were previously unthinkable. Every complex design project, from integrated circuits, to aerospace vehicles, to industrial manufacturing processes requires these new methods. This book fulfills the essential need of system and control engineers at all levels in understanding modeling and simulation. This book, written as a true text/reference has become a standard sr./graduate level course in all EE departments worldwide and all professionals in this area are required to update their skills. The book provides a rigorous mathematical foundation for modeling and computer simulation. It provides a comprehensive framework for modeling and simulation integrating the various simulation approaches. It covers model formulation, simulation model execution, and the model building process with its key activities model abstraction and model simplification, as well as the organization of model libraries. Emphasis of the book is in particular in integrating discrete event and continuous modeling approaches as well as a new approach for discrete event simulation of continuous processes. The book also discusses simulation execution on parallel and distributed machines and concepts for simulation model realization based on the High Level Architecture (HLA) standard of the Department of Defense. Presents a working foundation necessary for compliance with High Level Architecture (HLA) standards Provides a comprehensive framework for continuous and discrete event modeling and simulation Explores the mathematical foundation of simulation modeling Discusses system morphisms for model abstraction and simplification Presents a new approach to discrete event simulation of continuous processes Includes parallel and distributed simulation of discrete event models Presents a concept to achieve simulator interoperability in the form of the DEVS-Bus
· 2014
Object-Oriented Simulation with Hierarchical, Modular Models: Intelligent Agents and Endomorphic Systems describes an approach to object-oriented discrete event simulation and the concepts of hierarchical, modular model construction, The implementation of the concepts of multifaceted modeling methodology in the DEVS-Scheme modeling and simulation environment is discussed. The use of the DEVS-Scheme environment in modeling artificial intelligent agents is also considered, along with the concept of endomorphism to characterize the application of self-embedded models, including models of self. Comprised of 15 chapters, this book begins with an overview of the dimensions of knowledge representation in simulation environments, followed by a discussion on object-oriented programming as well as the concepts of modular, hierarchical models and the system entity structure. Subsequent chapters focus on digraph-models and experimental frames; DEVS formalism and DEVS-Scheme simulation environment; a model base for simple multi-computer architectures; and rule-based specification of atomic models. Model bases in endomorphic systems and intelligent agents are also examined. This monograph will be of interest to simulation theorists as well as practitioners and researchers in the fields of artificial intelligence, systems engineering, computer science and engineering, and operations research.
Data Engineering has become a necessary and critical activity for business, engineering, and scientific organizations as the move to service oriented architecture and web services moves into full swing. Notably, the US Department of Defense is mandating that all of its agencies and contractors assume a defining presence on the Net-centric Global Information Grid. This book provides the first practical approach to data engineering and modeling, which supports interoperabililty with consumers of the data in a service- oriented architectures (SOAs). Although XML (eXtensible Modeling Language) is the lingua franca for such interoperability, it is not sufficient on its own. The approach in this book addresses critical objectives such as creating a single representation for multiple applications, designing models capable of supporting dynamic processes, and harmonizing legacy data models for web-based co-existence. The approach is based on the System Entity Structure (SES) which is a well-defined structure, methodology, and practical tool with all of the functionality of UML (Unified Modeling Language) and few of the drawbacks. The SES originated in the formal representation of hierarchical simulation models. So it provides an axiomatic formalism that enables automating the development of XML dtds and schemas, composition and decomposition of large data models, and analysis of commonality among structures. Zeigler and Hammond include a range of features to benefit their readers. Natural language, graphical and XML forms of SES specification are employed to allow mapping of legacy meta-data. Real world examples and case studies provide insight into data engineering and test evaluation in various application domains. Comparative information is provided on concepts of ontologies, modeling and simulation, introductory linguistic background, and support options enable programmers to work with advanced tools in the area. The website of the Arizona Center for Integrative Modeling and Simulation, co-founded by Zeigler in 2001, provides links to downloadable software to accompany the book. - The only practical guide to integrating XML and web services in data engineering - Introduces linguistic levels of interoperability for effective information exchange - Covers the interoperability standards mandated by national and international agencies - Complements Zeigler's classic THEORY OF MODELING AND SIMULATION
· 2001
During the 1990s the computing industry has witnessed many advances in mobile and enterprise computing. Many of these advances have been made possible by developments in the areas such as modeling, simulation, and artificial intelligence. Within the different areas of enterprise computing - such as manufacturing, health organisation, and commerce - the need for a disciplined, multifaceted, and unified approach to modeling and simulation has become essential. This new book provides a forum for scientists, academics, and professionals to present their latest research findings from the various fields: artificial intelligence, collaborative/distributed computing, modeling, and simulation.
Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations, Third Edition, continues the legacy of this authoritative and complete theoretical work. It is ideal for graduate and PhD students and working engineers interested in posing and solving problems using the tools of logico-mathematical modeling and computer simulation. Continuing its emphasis on the integration of discrete event and continuous modeling approaches, the work focuses light on DEVS and its potential to support the co-existence and interoperation of multiple formalisms in model components. New sections in this updated edition include discussions on important new extensions to theory, including chapter-length coverage of iterative system specification and DEVS and their fundamental importance, closure under coupling for iteratively specified systems, existence, uniqueness, non-deterministic conditions, and temporal progressiveness (legitimacy). - Presents a 40% revised and expanded new edition of this classic book with many important post-2000 extensions to core theory - Provides a streamlined introduction to Discrete Event System Specification (DEVS) formalism for modeling and simulation - Packages all the "need-to-know" information on DEVS formalism in one place - Expanded to include an online ancillary package, including numerous examples of theory and implementation in DEVS-based software, student solutions and instructors manual
No image available
· 2012
This user’s reference is a companion to the separate book also titled “Guide to Modelling and Simulation of Systems of Systems.” The principal book explicates integrated development environments to support virtual building and testing of systems of systems, covering in some depth the MS4 Modelling EnvironmentTM. This user’s reference provides a quick reference and exposition of the various concepts and functional features covered in that book. The topics in the user’s reference are grouped in alignment with the workflow displayed on the MS4 Modeling EnvironmentTM launch page, under the headings Atomic Models, System Entity Structure, Pruning SES, and Miscellaneous. For each feature, the reference discusses why we use it, when we should use it, and how to use it. Further comments and links to related features are also included.
This easy-to-follow textbook provides an exercise-driven guide to the use of the Discrete Event Systems Specification (DEVS) simulation modeling formalism and the System Entity Structure (SES) simulation model ontology supported with the latest advances in software architecture and design principles, methods, and tools for building and testing virtual Systems of Systems (SoS). The book examines a wide variety of SoS problems, ranging from cloud computing systems to biological systems in agricultural food crops. This enhanced and expanded second edition also features a new chapter on DEVS support for Markov modeling and simulation. Topics and features: provides an extensive set of exercises throughout the text to reinforce the concepts and encourage use of the tools, supported by introduction and summary sections; discusses how the SoS concept and supporting virtual build and test environments can overcome the limitations of current approaches; offers a step-by-step introduction to the DEVS concepts and modeling environment features required to build sophisticated SoS models; describes the capabilities and use of the tools CoSMoS/DEVS-Suite, Virtual Laboratory Environment, and MS4 MeTM; reviews a range of diverse applications, from the development of new satellite design and launch technologies, to surveillance and control in animal epidemiology; examines software/hardware co-design for SoS, and activity concepts that bridge information-level requirements and energy consumption in the implementation; demonstrates how the DEVS formalism supports Markov modeling within an advanced modeling and simulation environment (NEW). This accessible and hands-on textbook/reference provides invaluable practical guidance for graduate students interested in simulation software development and cyber-systems engineering design, as well as for practitioners in these, and related areas.