No image available
· 2020
Abstract: Cognition emerges from coordinated processing among distributed cortical brain regions, enabled through interconnected white matter networks. Cortical disconnection caused by age-related decline in white matter integrity (WMI) is likely to contribute to age-related cognitive decline. Physical activity (PA) has been suggested to have beneficial effects on white matter structure. However, its potential to counteract age-related decline in WMI is not yet well established. The present explorative study analyzed if PA was associated with WMI in cognitively healthy older adults and if this association was modulated by age. Forty-four cognitively healthy older individuals (aged 60-88 years) with diffusion-tensor imaging (DTI) and PA measurements were included from the AgeGain study. Voxelwise analysis using Tract-Based Spatial Statistics (TBSS) demonstrated that PA was associated with WMI in older adults. However, results emphasized that this association was restricted to high age. The association between PA and WMI was found in widespread white matter regions suggesting a global rather than a regional effect. Supplementary analyses demonstrated an association between the integrity of these regions and the performance in memory [verbal learning and memory test (VLMT)] and executive functioning (Tower of London).Results of the present explorative study support the assumption that PA is associated with WMI in older adults. However, results emphasize that this association is restricted to high age. Since cognitive decline in the elderly is typically most pronounced in later stages of aging, PA qualifies as a promising tool to foster resilience against age-related cognitive decline, via the preservation of the integrity of the brains WM
No image available
No image available
· 2021
Abstract: Background: Normal aging is associated with working memory decline. A decrease in working memory performance is associated with age-related changes in functional activation patterns in the dorsolateral prefrontal cortex (DLPFC). Cognitive training can improve cognitive performance in healthy older adults. We implemented a cognitive training study to assess determinants of generalization of training gains to untrained tasks, a key indicator for the effectiveness of cognitive training. We aimed to investigate the association of resting-state functional connectivity (FC) of DLPFC with working memory performance improvement and cognitive gains after the training. Method: A sample of 60 healthy older adults (mean age: 68 years) underwent a 4-week neuropsychological training, entailing a working memory task. Baseline resting-state functional MRI (rs-fMRI) images were acquired in order to investigate the FC of DLPFC. To evaluate training effects, participants underwent a neuropsychological assessment before and after the training. A second follow-up assessment was applied 12 weeks after the training. We used cognitive scores of digit span backward and visual block span backward tasks representing working memory function. The training group was divided into subjects who had and who did not have training gains, which was defined as a higher improvement in working memory tasks than the control group (N = 19). Results: A high FC of DLPFC of the right hemisphere was significantly associated with training gains and performance improvement in the visuospatial task. The maintenance of cognitive gains was restricted to the time period directly after the training. The training group showed performance improvement in the digit span backward task. Conclusion: Functional activation patterns of the DLPFC were associated with the degree of working memory training gains and visuospatial performance improvement. Although improvement through cognitive training and acquisition of training gains are possible in aging, they remain limited