· 2019
There are over 20 million young people of color in the United States whose representation in STEM education pathways and in the STEM workforce is still far below their numbers in the general population. Their participation could help re-establish the United States' preeminence in STEM innovation and productivity, while also increasing the number of well-educated STEM workers. There are nearly 700 minority-serving institutions (MSIs) that provide pathways to STEM educational success and workforce readiness for millions of students of colorâ€"and do so in a mission-driven and intentional manner. They vary substantially in their origins, missions, student demographics, and levels of institutional selectivity. But in general, their service to the nation provides a gateway to higher education and the workforce, particularly for underrepresented students of color and those from low-income and first-generation to college backgrounds. The challenge for the nation is how to capitalize on the unique strengths and attributes of these institutions and to equip them with the resources, exceptional faculty talent, and vital infrastructure needed to educate and train an increasingly critical portion of current and future generations of scientists, engineers, and health professionals. Minority Serving Institutions examines the nation's MSIs and identifies promising programs and effective strategies that have the highest potential return on investment for the nation by increasing the quantity and quality MSI STEM graduates. This study also provides critical information and perspective about the importance of MSIs to other stakeholders in the nation's system of higher education and the organizations that support them.
· 2016
The future competitiveness of the United States in an increasingly interconnected global economy depends on the nation fostering a workforce with strong capabilities and skills in science, technology, engineering, and mathematics (STEM). STEM knowledge and skills enable both individual opportunity and national competitiveness, and the nation needs to develop ways of ensuring access to high-quality education and training experiences for all students at all levels and for all workers at all career stages. The National Science Foundation (NSF) holds a primary responsibility for overseeing the federal government's efforts to foster the creation of a STEM-capable workforce. As part of its efforts in this endeavor, NSF's Directorate on Education and Human Resources asked the National Academies of Sciences, Engineering, and Medicine to convene a workshop that would contribute to NSF's preparation of a theoretical and evidence-based STEM Workforce Development R&D Core Framework. Participants discussed research themes, identified gaps and emerging research opportunities, and recommended refinements in the goals of the framework. This report summarizes the presentations and discussions from the workshop.
· 2016
Students, parents, and government agencies need as much information as possible about the outcomes of the higher education experience and the extent to which they can expect a fair return on their investment in higher education.In order to better understand the concept of quality - enabling students to acquire knowledge in a variety of disciplines and deep knowledge in at least one discipline, as well as to develop a range of skills and habits of mind that prepare them for career success, engaged citizenship, intercultural competence, social responsibility, and continued intellectual growth - an ad hoc planning committee of the National Academies of Sciences, Engineering, and Medicine Board on Higher Education and Workforce, with funding from the Lumina Foundation, organized a workshop in Washington, D.C., on December 14-15, 2015.This report summarizes the presentations and discussion of that event.
· 2018
In the United States, broad study in an array of different disciplines â€"arts, humanities, science, mathematics, engineeringâ€" as well as an in-depth study within a special area of interest, have been defining characteristics of a higher education. But over time, in-depth study in a major discipline has come to dominate the curricula at many institutions. This evolution of the curriculum has been driven, in part, by increasing specialization in the academic disciplines. There is little doubt that disciplinary specialization has helped produce many of the achievement of the past century. Researchers in all academic disciplines have been able to delve more deeply into their areas of expertise, grappling with ever more specialized and fundamental problems. Yet today, many leaders, scholars, parents, and students are asking whether higher education has moved too far from its integrative tradition towards an approach heavily rooted in disciplinary "silos". These "silos" represent what many see as an artificial separation of academic disciplines. This study reflects a growing concern that the approach to higher education that favors disciplinary specialization is poorly calibrated to the challenges and opportunities of our time. The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education examines the evidence behind the assertion that educational programs that mutually integrate learning experiences in the humanities and arts with science, technology, engineering, mathematics, and medicine (STEMM) lead to improved educational and career outcomes for undergraduate and graduate students. It explores evidence regarding the value of integrating more STEMM curricula and labs into the academic programs of students majoring in the humanities and arts and evidence regarding the value of integrating curricula and experiences in the arts and humanities into college and university STEMM education programs.
· 2020
Teachers play a critical role in the success of their students, both academically and in regard to long term outcomes such as higher education participation and economic attainment. Expectations for teachers are increasing due to changing learning standards and a rapidly diversifying student population. At the same time, there are perceptions that the teaching workforce may be shifting toward a younger and less experienced demographic. These actual and perceived changes raise important questions about the ways teacher education may need to evolve in order to ensure that educators are able to meet the needs of students and provide them with classroom experiences that will put them on the path to future success. Changing Expectations for the K-12 Teacher Workforce: Policies, Preservice Education, Professional Development, and the Workplace explores the impact of the changing landscape of K-12 education and the potential for expansion of effective models, programs, and practices for teacher education. This report explores factors that contribute to understanding the current teacher workforce, changing expectations for teaching and learning, trends and developments in the teacher labor market, preservice teacher education, and opportunities for learning in the workplace and in-service professional development.
· 2016
U.S. strength in science, technology, engineering, and mathematics (STEM) disciplines has formed the basis of innovations, technologies, and industries that have spurred the nation's economic growth throughout the last 150 years. Universities are essential to the creation and transfer of new knowledge that drives innovation. This knowledge moves out of the university and into broader society in several ways â€" through highly skilled graduates (i.e. human capital); academic publications; and the creation of new products, industries, and companies via the commercialization of scientific breakthroughs. Despite this, our understanding of how universities receive, interpret, and respond to industry signaling demands for STEM-trained workers is far from complete. Promising Practices for Strengthening the Regional STEM Workforce Development Ecosystem reviews the extent to which universities and employers in five metropolitan communities (Phoenix, Arizona; Cleveland, Ohio; Montgomery, Alabama; Los Angeles, California; and Fargo, North Dakota) collaborate successfully to align curricula, labs, and other undergraduate educational experiences with current and prospective regional STEM workforce needs. This report focuses on how to create the kind of university-industry collaboration that promotes higher quality college and university course offerings, lab activities, applied learning experiences, work-based learning programs, and other activities that enable students to acquire knowledge, skills, and attributes they need to be successful in the STEM workforce. The recommendations and findings presented will be most relevant to educators, policy makers, and industry leaders.
· 2017
Skilled technical occupationsâ€"defined as occupations that require a high level of knowledge in a technical domain but do not require a bachelor's degree for entryâ€"are a key component of the U.S. economy. In response to globalization and advances in science and technology, American firms are demanding workers with greater proficiency in literacy and numeracy, as well as strong interpersonal, technical, and problem-solving skills. However, employer surveys and industry and government reports have raised concerns that the nation may not have an adequate supply of skilled technical workers to achieve its competitiveness and economic growth objectives. In response to the broader need for policy information and advice, Building America's Skilled Technical Workforce examines the coverage, effectiveness, flexibility, and coordination of the policies and various programs that prepare Americans for skilled technical jobs. This report provides action-oriented recommendations for improving the American system of technical education, training, and certification.
· 2012
The ability of the nation's military to prevail during future conflicts, and to fulfill its humanitarian and other missions, depends on continued advances in the nation's technology base. A workforce with robust Science, Technology, Engineering and Mathematics (STEM) capabilities is critical to sustaining U.S. preeminence. Today, however, the STEM activities of the Department of Defense (DOD) are a small and diminishing part of the nation's overall science and engineering enterprise. Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce presents five principal recommendations for attracting, retaining, and managing highly qualified STEM talent within the department based on an examination of the current STEM workforce of DOD and the defense industrial base. As outlined in the report, DOD should focus its investments to ensure that STEM competencies in all potentially critical, emerging topical areas are maintained at least at a basic level within the department and its industrial and university bases.
· 2012
An Interim Report on Assuring DoD a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce is a report on the science, technology, mathematics, and engineering (STEM) workforce of the Department of Defense (DOD) and the U.S. defense industrial base is part of an 18-month study to assess the STEM capabilities that the DOD will need in order to meet its goals, objectives, and priorities. This study also assesses whether the current DOD workforce and strategy will meet those needs; and indentifies and evaluates options and recommends strategies that the department could use to help meet its future STEM needs. This study was undertaken by the National Academy of Engineering and the National Research Council. This report was issued for the purpose of assisting Assistant Secretary of Defense for Research and Engineering with its fiscal year 2012 planning process and with laying the groundwork for future years. Earlier in the project, the Committee on Science, Technology, Engineering, and Mathematics Workforce Needs for the U.S. Department of Defense and the U.S. Defense Industrial Base convened a workshop on August 1 and 2, 2011, in Rosslyn, Virginia. This workshop met for the purpose of gathering a broad range of views from the public sector and the private sector. This includes major defense contractors, and from nongovernmental organizations (NGOs), all of which are stakeholders in the future STEM workforce. At the conclusion of this study, a final report will be released.
· 2020
Mentorship is a catalyst capable of unleashing one's potential for discovery, curiosity, and participation in STEMM and subsequently improving the training environment in which that STEMM potential is fostered. Mentoring relationships provide developmental spaces in which students' STEMM skills are honed and pathways into STEMM fields can be discovered. Because mentorship can be so influential in shaping the future STEMM workforce, its occurrence should not be left to chance or idiosyncratic implementation. There is a gap between what we know about effective mentoring and how it is practiced in higher education. The Science of Effective Mentorship in STEMM studies mentoring programs and practices at the undergraduate and graduate levels. It explores the importance of mentorship, the science of mentoring relationships, mentorship of underrepresented students in STEMM, mentorship structures and behaviors, and institutional cultures that support mentorship. This report and its complementary interactive guide present insights on effective programs and practices that can be adopted and adapted by institutions, departments, and individual faculty members.