No image available
· 2019
Abstract: Relaxases of the MOBH family are often found on large plasmids, genetic islands and integrative conjugative elements. Many members of this family contain an N-terminal relaxase domain (TraI_2) followed by a disordered middle part and a C-terminal domain of unknown function (TraI_2_C). The TraI_2 domain contains two putative metal-binding motifs, an HD domain motif and an alternative 3H motif. TraI, encoded within the gonococcal genetic island of Neisseria gonorrhoeae, is the prototype of the MOBH family. SAXS experiments showed that TraI_2 and TraI_2_C form globular structures separated by an extended middle domain. The TraI_2 domain cleaves oriT-ssDNA in a site-specific Mn2+ or Co2+ dependent manner. The minimal oriT encompasses 50 nucleotides, requires an inverted repeat 3′ of the nic-site and several nucleotides around nic for efficient cleavage. Surprisingly, no stable covalent relaxase-DNA intermediate was observed. Mutagenesis of conserved tyrosines showed that cleavage was abolished in the Y212A mutant, whereas the Y212F and Y212H mutants retained residual activity. The HD and the alternative 3H motifs were essential for cleavage and the HD domain residues D162 and D267 for metal ion binding. We propose that the active site binds two metal ions, one in a high-affinity and one in a low-affinity site
No image available
No image available
· 2019
Abstract: The role of cyclic nucleotides as second messengers for intracellular signal transduction has been well described in bacteria. One recently discovered bacterial second messenger is cyclic di-adenylate monophosphate (c-di-AMP), which has been demonstrated to be essential in bacteria. Compared to bacteria, significantly less is known about second messengers in archaea. This study presents the first evidence of in vivo presence of c-di-AMP in an archaeon. The model organism Haloferax volcanii was demonstrated to produce c-di-AMP. Its genome encodes one diadenylate cyclase (DacZ) which was shown to produce c-di-AMP in vitro. Similar to bacteria, the dacZ gene is essential and homologous overexpression of DacZ leads to cell death, suggesting the need for tight regulation of c-di-AMP levels. Such tight regulation often indicates the control of important regulatory processes. A central target of c-di-AMP signaling in bacteria is cellular osmohomeostasis. The results presented here suggest a comparable function in H. volcanii. A strain with decreased c-di-AMP levels exhibited an increased cell area in hypo-salt medium, implying impaired osmoregulation. In summary, this study expands the field of research on c-di-AMP and its physiological function to archaea and indicates that osmoregulation is likely to be a common function of c-di-AMP in bacteria and archaea
No image available
No image available
No image available
Abstract: Second messengers transfer signals from changing intra- and extracellular conditions to a cellular response. Over the last few decades, several nucleotide-based second messengers have been identified and characterized in especially bacteria and eukaryotes. Also in archaea, several nucleotide-based second messengers have been identified. This review will summarize our understanding of nucleotide-based second messengers in archaea. For some of the nucleotide-based second messengers, like cyclic di-AMP and cyclic oligoadenylates, their roles in archaea have become clear. Cyclic di-AMP plays a similar role in osmoregulation in euryarchaea as in bacteria, and cyclic oligoadenylates are important in the Type III CRISPR-Cas response to activate CRISPR ancillary proteins involved in antiviral defense. Other putative nucleotide-based second messengers, like 3′,5′- and 2′,3′-cyclic mononucleotides and adenine dinucleotides, have been identified in archaea, but their synthesis and degradation pathways, as well as their functions as secondary messengers, still remain to be demonstrated. In contrast, 3′-3′-cGAMP has not yet been identified in archaea, but the enzymes required to synthesize 3′-3′-cGAMP have been found in several euryarchaeotes. Finally, the widely distributed bacterial second messengers, cyclic diguanosine monophosphate and guanosine (penta-)/tetraphosphate, do not appear to be present in archaea
No image available
No image available
No image available
Abstract: The archaellum, the rotating motility structure of archaea, is best studied in the crenarchaeon Sulfolobus acidocaldarius. To better understand how assembly and rotation of this structure is driven, two ATP-binding proteins, FlaI and FlaH of the motor complex of the archaellum of the euryarchaeon Pyrococcus furiosus, were overexpressed, purified and studied. Contrary to the FlaI ATPase of S. acidocaldarius, which only forms a hexamer after binding of nucleotides, FlaI of P. furiosus formed a hexamer in a nucleotide independent manner. In this hexamer only 2 of the ATP binding sites were available for binding of the fluorescent ATP-analog MANT-ATP, suggesting a twofold symmetry in the hexamer. P. furiosus FlaI showed a 250-fold higher ATPase activity than S. acidocaldarius FlaI. Interaction studies between the isolated N- and C-terminal domains of FlaI showed interactions between the N- and C-terminal domains and strong interactions between the N-terminal domains not previously observed for ATPases involved in archaellum assembly. These interactions played a role in oligomerization and activity, suggesting a conformational state of the hexamer not observed before. Further interaction studies show that the C-terminal domain of PfFlaI interacts with the nucleotide binding protein FlaH. This interaction stimulates the ATPase activity of FlaI optimally at a 1:1 stoichiometry, suggesting that hexameric PfFlaI interacts with hexameric PfFlaH. These data help to further understand the complex interactions that are required to energize the archaellar motor
No image available