· 2009
"Robotic Mapping and Exploration" is an important contribution in the area of simultaneous localization and mapping (SLAM) for autonomous robots, which has been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the autonomous mapping learning problem. Solutions include uncertainty-driven exploration, active loop closing, coordination of multiple robots, learning and incorporating background knowledge, and dealing with dynamic environments. Results are accompanied by a rich set of experiments, revealing a promising outlook toward the application to a wide range of mobile robots and field settings, such as search and rescue, transportation tasks, or automated vacuum cleaning.
No image available
This primer describes particle filters and relevant applications in the context of robot navigation and illustrates that these filters are powerful tools that can robustly estimate the state of the robot and its environment.
No image available