· 2006
This Third Edition provides the latest tools and techniques that enable computers to learn The Third Edition of this internationally acclaimed publication provides the latest theory and techniques for using simulated evolution to achieve machine intelligence. As a leading advocate for evolutionary computation, the author has successfully challenged the traditional notion of artificial intelligence, which essentially programs human knowledge fact by fact, but does not have the capacity to learn or adapt as evolutionary computation does. Readers gain an understanding of the history of evolutionary computation, which provides a foundation for the author's thorough presentation of the latest theories shaping current research. Balancing theory with practice, the author provides readers with the skills they need to apply evolutionary algorithms that can solve many of today's intransigent problems by adapting to new challenges and learning from experience. Several examples are provided that demonstrate how these evolutionary algorithms learn to solve problems. In particular, the author provides a detailed example of how an algorithm is used to evolve strategies for playing chess and checkers. As readers progress through the publication, they gain an increasing appreciation and understanding of the relationship between learning and intelligence. Readers familiar with the previous editions will discover much new and revised material that brings the publication thoroughly up to date with the latest research, including the latest theories and empirical properties of evolutionary computation. The Third Edition also features new knowledge-building aids. Readers will find a host of new and revised examples. New questions at the end of each chapter enable readers to test their knowledge. Intriguing assignments that prepare readers to manage challenges in industry and research have been added to the end of each chapter as well. This is a must-have reference for professionals in computer and electrical engineering; it provides them with the very latest techniques and applications in machine intelligence. With its question sets and assignments, the publication is also recommended as a graduate-level textbook.
· 2002
This book explains how a computer, by replicating the processes of Darwinian evolution, taught itself to play checkers far better than its creators could have programmed it to play. Fogel (editor, IEEE Transactions on Evolutionary Computation) considers the implications for evolutionary computations and artificial intelligence. Diagrams illustrate the evolutionary and computational processes at work, and the course of various games of checkers. Annotation copyrighted by Book News, Inc., Portland, OR.
· 2000
"In-depth and updated, Evolutionary Computation shows you how to use simulated evolution to achieve machine intelligence. You will gain current insights into the history of evolutionary computation and the newest theories shaping research. Fogel carefully reviews the "no free lunch theorem" and discusses new theoretical findings that challenge some of the mathematical foundations of simulated evolution. This second edition also presents the latest game-playing techniques that combine evolutionary algorithms with neural networks, including their success in playing competitive checkers. Chapter by chapter, this comprehensive book highlights the relationship between learning and intelligence."
Provides an in-depth and even treatment of the three pillars of computational intelligence and how they relate to one another This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basis function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzzy integrals Examines evolutionary optimization, evolutionary learning and problem solving, and collective intelligence Includes end-of-chapter practice problems that will help readers apply methods and techniques to real-world problems Fundamentals of Computational intelligence is written for advanced undergraduates, graduate students, and practitioners in electrical and computer engineering, computer science, and other engineering disciplines.
No image available
'I will tel! you' the hermit said to Lancelot 'the right of the matter.' Anonymous, The Quest of the Holy Grail Gyorgy Polya's How to Solve It [287] stands as one of the most important contributions to the problem-solving literatme in the twentieth century. Even now, as we move into the new millennium, the book continues tobe a favorite among teachers and students for its instructive heuristics. The first edition of the book appeared in 1945, near the end of the Second World War and a few years before the invention of the transistor. The book was a quick success, and a second edition came out in 1957. How to Solve It is a compendium of approaches for tackling problems as we find them in mathematics. That is, the book provides not only examples of techniques and procedures, but also instruction on how to make analogies, use auxiliary devices, work backwards from the goal to the given, and so forth. Es sentially, the book is an encyclopedia of problem-solving methods to be carried out by hand, but more than that, it is a treatise on how to think about framing and attacking problems.
No image available
No image available
No author available
· 1998
No image available