No image available
No image available
No image available
No image available
No image available
No image available
We show that the robust counterpart of a convex quadratic constraint with ellipsoidal implementation error is equivalent to a system of conic quadratic constraints. To prove this result we first derive a sharper result for the S-lemma in case the two matrices involved can be simultaneously diagonalized. This extension of the S-lemma may also be useful for other purposes. We extend the result to the case in which the uncertainty region is the intersection of two convex quadratic inequalities. The robust counterpart for this case is also equivalent to a system of conic quadratic constraints. Results for convex conic quadratic constraints with implementation error are also given. We conclude with showing how the theory developed can be applied in robust linear optimization with jointly uncertain parameters and implementation errors, in sequential robust quadratic programming, in Taguchi’s robust approach, and in the adjustable robust counterpart.
No image available
No image available
No image available
No author available
· 2011
This paper determines the optimal timing of dike heightenings as well as the corresponding optimal dike heightenings to protect against floods. To derive the optimal policy we design an algorithm based on the Impulse Control Maximum Principle. In this way the paper presents one of the first real life applications of the Impulse Control Maximum Principle developed by Blaqui`ere. We show that the proposed Impulse Control approach performs better than Dynamic Programming with respect to computational time. This is caused by the fact that Impulse Control does not need discretization in time.
No image available
The paper identifies classes of nonconvex optimization problems whose convex relaxations have optimal solutions which at the same time are global optimal solutions of the original nonconvex problems. Such a hidden convexity property was so far limited to quadratically constrained quadratic problems with one or two constraints. We extend it here to problems with some partial separable structure. Among other things, the new hidden convexity results open up the possibility to solve multi-stage robust optimization problems using certain nonlinear decision rules. convex relaxation of nonconvex problems, hidden convexity, partially separable functions, robust optimization.