No image available
Collaboration on the First Edition of Spacetime Physics began in the mid-1960s when Edwin Taylor took a junior faculty sabbatical at Princeton University where John Wheeler was a professor. The resulting text emphasized the unity of spacetime and those quantities (such as proper time, proper distance, mass) that are invariant, the same for all observers, rather than those quantities (such as space and time separations) that are relative, different for different observers. The book has become a standard introduction to relativity. The Second Edition of Spacetime Physics embodies what the authors have learned during an additional quarter century of teaching and research. They have updated the text to reflect the immense strides in physics during the same period and modernized and increased the number of exercises, for which the First Edition was famous. Enrichment boxes provide expanded coverage of intriguing topics. An enlarged final chapter on general relativity includes new material on gravity waves, black holes, and cosmology. The Second Edition of Spacetime Physics provides a new generation of readers with a deep and simple overview of the principles of relativity.
Provides comprehensive coverage of all the fundamentals of quantum physics. Full mathematical treatments are given. Uses examples from different areas of physics to demonstrate how theories work in practice. Text derived from lectures delivered at Massachusetts Institute of Technology.
No image available
No author available
· 1963
"The metric helps to answer every scientific question about (nonquantum) features of spacetime surrounding a black hole, every possible question about trajectories of light and satellites around the black hole as well as around more familiar centers of attraction such as Earth and Sun. The metric for a rotating black hole may tell us about quasars, the most powerful steady energy sources in the Universe. The black-hole metric brings preliminary insights about the history and structure of the Cosmos." "Using the metric requires only algebra, elementary differential calculus, and a handful of integrals. This modest mathematics opens the subject to the interested person and paves the way to a deeper study of general relativity for one who will discover new truth about this strange and beautiful Universe, our home."--BOOK JACKET.
No image available
No image available
No image available