No image available
· 2018
Abstract: The neuromuscular junction (NMJ) appears to be a site of pathology in a number of peripheral nerve diseases. Charcot-Marie-Tooth (CMT) 4C is an autosomal recessive, early onset, demyelinating neuropathy. Numerous mutations in the SH3TC2 gene have been shown to underlie the condition often associated with scoliosis, foot deformities, and reduced nerve conduction velocities. Mice with exon 1 of the Sh3tc2 gene knocked out demonstrate many of the features seen in patients. To determine if NMJ pathology is contributory to the pathomechanisms of CMT4C we examined NMJs in the gastrocnemius muscle of SH3TC2-deficient mice. In addition, we performed proteomic assessment of the sciatic nerve to identify protein factors contributing to the NMJ alterations and the survival of demyelinated axons. Morphological and gene expression analysis of NMJs revealed a lack of continuity between the pre- and post-synaptic apparatus, increases in post-synaptic fragmentation and dispersal, and an increase in expression of the gamma subunit of the acetylcholine receptor. There were no changes in axonal width or the number of axonal inputs to the NMJ. Proteome investigations of the sciatic nerve revealed altered expression of extracellular matrix proteins important for NMJ integrity. Together these observations suggest that CMT4C pathology includes a compromised NMJ even in the absence of changes to the innervating axon
No image available
· 2020
Abstract: Introduction: Congenital myasthenic syndromes (CMS) are a diverse group of inherited neuromuscular disorders characterized by a failure of synaptic transmission at the neuromuscular junction (NMJ). CMS often present early with fatigable weakness and can be fatal through respiratory complications. The AGRN gene is one of over 30 genes known to harbor mutations causative for CMS. In this study, we aimed to determine if a compound (NT1654), developed to stimulate the acetylcholine receptor (AChR) clustering pathway, would benefit a mouse model of CMS caused by a loss-of-function mutation in Agrn (Agrnnmf380 mouse). Methods: Agrnnmf380 mice received an injection of either NT1654 or vehicle compound daily, with wild-type litter mates used for comparison. Animals were weighed daily and underwent grip strength assessments. After 30 days of treatment animals were sacrificed, and muscles collected. Investigations into NMJ and muscle morphology were performed on collected tissue. Results: While minimal improvements in NMJ ultrastructure were observed with electron microscopy, gross NMJ structure analysis using fluorescent labelling and confocal microscopy revealed extensive postsynaptic improvements in Agrnnmf380 mice with NT1654 administration, with variables frequently returning to wild type levels. An improvement in muscle weight and myofiber characteristics helped increase forelimb grip strength and body weight. Conclusions: We conclude that NT1654 restores NMJ postsynaptic structure and improves muscle strength through normalization of muscle fiber composition and the prevention of atrophy. We hypothesize this occurs through the AChR clustering pathway in Agrnnmf380 mice. Future studies should investigate if this may represent a viable treatment option for patients with CMS, especially those with mutations in proteins of the AChR clustering pathway
No image available
· 2019
Abstract: Background Patient and public involvement for co-creation is increasingly recognized as a valuable strategy to develop healthcare research targeting patients' real needs. However, its practical implementation is not as advanced and unanimously accepted as it could be, due to cultural differences and complexities of managing healthcare programs and clinical studies, especially in the rare disease field. Main body The European Neuromuscular Centre, a European foundation of patient organizations, involved its key stakeholders in a special workshop to investigate the position of the neuromuscular patient community with respect to healthcare and medical research to identify and address gaps and bottlenecks. The workshop took place in Milan (Italy) on January 19-20, 2018, involving 45 participants who were mainly representatives of the patient community, but also included experts from clinical centers, industry and regulatory bodies. In order to provide practical examples and constructive suggestions, specific topics were identified upfront. The first set of issues concerned the quality of life at specific phases of a patient's life, such as at the time of diagnosis or during pediatric to adult transition, and patient involvement in medical research on activities in daily living including patient reported outcome measures. The second set of issues concerned the involvement of patients in the management of clinical research tools, such as registries and biobanks, and their participation in study design or marketing authorization processes. Introductory presentations were followed by parallel working group sessions, to gain constructive contributions from all participants. The concept of shared decision making was used to ensure, in discussions, a partnership-based identification of the wishes and needs of all stakeholders involved, and the "ladder of participation" tool served as a model to evaluate the actual and the desired level of patients' involvement in all topics addressed. A general consensus on the outcome of the meeting was collected during the final plenary session. This paper reports the outcome of the workshop and the specific suggestions derived from the analysis of the first set of topics, related to quality of life. The outcomes of the second set of topics are reported elsewhere and are only briefly summarized herein for the sake of completeness. Conclusions The neuromuscular community proved to be very active and engaged at different levels in the healthcare initiatives of interest. The workshop participants critically discussed several topics, providing practical examples where different stakeholders could play a role in making a change and bridging gaps. Overall, they indicated the need for education of all stakeholders for better communication, where everyone should become an ambassador to promote real change. Support should also come from institutions and healthcare bodies both at structural and economic level
No image available
No image available
No image available
· 2023
Abstract: Background and objectives: Disease progression in patients with spinal muscular atrophy (SMA) has changed dramatically within the past years due to the approval of three different disease-modifying treatments. Nusinersen was the first drug to be approved for the treatment of SMA patients. Clinical trials provided data from infants with SMA type 1 and children with SMA type 2, but there is still insufficient evidence and only scarcely reported long-term experience for nusinersen treatment in ambulant patients. Here, we report data from the SMArtCARE registry of ambulant patients under nusinersen treatment with a follow-up period of up to 38 months. Methods: SMArtCARE is a disease-specific registry in Germany, Austria and Switzerland. Data are collected as real-world data during routine patient visits. Our analysis included all patients under treatment with nusinersen able to walk independently before start of treatment with focus on changes in motor function. Results: Data from 231 ambulant patients were included in the analysis. During the observation period, 31 pediatric walkers (27.2%) and 31 adult walkers (26.5%) experienced a clinically meaningful improvement of≥30 m in the 6-Minute-Walk-Test. In contrast, only five adult walkers (7.7%) showed a decline in walking distance≥30 m, and two pediatric walkers (1.8%) lost the ability to walk unassisted under treatment with nusinersen. HFMSE and RULM scores improved in pediatric and remained stable in adult patients. Conclusion: Our data demonstrate a positive effect of nusinersen treatment in most ambulant pediatric and adult SMA patients. We not only observed a stabilization of disease progression or lack of deterioration, but clinically meaningful improvements in walking distance. Trial registration DRKS00012699
No image available
Abstract: Background: Recent short-term clinical trials in patients with Duchenne Muscular Dystrophy (DMD) have indicated greater disease variability in terms of progression than expected. In addition, as average life-expectancy increases, reliable data is required on clinical progression in the older DMD population. Objective: To determine the effects of corticosteroids on major clinical outcomes of DMD in a large multinational cohort of genetically confirmed DMD patients. Methods: In this cross-sectional study we analysed clinical data from 5345 genetically confirmed DMD patients from 31 countries held within the TREAT-NMD global DMD database. For analysis patients were categorised by corticosteroid background and further stratified by age. Results: Loss of ambulation in non-steroid treated patients was 10 years and in corticosteroid treated patients 13 years old (p = 0.0001). Corticosteroid treated patients were less likely to need scoliosis surgery (p 0.001) or ventilatory support (p 0.001) and there was a mild cardioprotective effect of corticosteroids in the patient population aged 20 years and older (p = 0.0035). Patients with a single deletion of exon 45 showed an increased survival in contrast to other single exon deletions.br
No image available
No image available
· 2018
Abstract: Objective To describe a patient with a multifocal demyelinating motor neuropathy with onset in childhood and a mutation in phosphatase and tensin homolog (PTEN), a tumor suppressor gene associated with inherited tumor susceptibility conditions, macrocephaly, autism, ataxia, tremor, and epilepsy. Functional implications of this protein have been investigated in Parkinson and Alzheimer diseases. Methods We performed whole-exome sequencing in the patient's genomic DNA validated by Sanger sequencing. Immunoblotting, in vitro enzymatic assay, and label-free shotgun proteomic profiling were performed in the patient's fibroblasts. Results The predominant clinical presentation of the patient was a childhood onset, asymmetric progressive multifocal motor neuropathy. In addition, he presented with macrocephaly, autism spectrum disorder, and skin hamartomas, considered as clinical criteria for PTEN-related hamartoma tumor syndrome. Extensive tumor screening did not detect any malignancies. We detected a novel de novo heterozygous c.269T>C, p.(Phe90Ser) PTEN variant, which was absent in both parents. The pathogenicity of the variant is supported by altered expression of several PTEN-associated proteins involved in tumorigenesis. Moreover, fibroblasts showed a defect in catalytic activity of PTEN against the secondary substrate, phosphatidylinositol 3,4-trisphosphate. In support of our findings, focal hypermyelination leading to peripheral neuropathy has been reported in PTEN-deficient mice. Conclusion We describe a novel phenotype, PTEN-associated multifocal demyelinating motor neuropathy with a skin hamartoma syndrome. A similar mechanism may potentially underlie other forms of Charcot-Marie-Tooth disease with involvement of the phosphatidylinositol pathway
No image available
Abstract: Congenital myasthenic syndromes (CMS) are a group of rare, neuromuscular disorders that usually present in childhood or infancy. While the phenotypic presentation of these disorders is diverse, the unifying feature is a pathomechanism that disrupts neuromuscular transmission. Recently, two mitochondrial genes--SLC25A1 and TEFM--have been reported in patients with suspected CMS, prompting a discussion about the role of mitochondria at the neuromuscular junction (NMJ). Mitochondrial disease and CMS can present with similar symptoms, and potentially one in four patients with mitochondrial myopathy exhibit NMJ defects. This review highlights research indicating the prominent roles of mitochondria at both the pre- and postsynapse, demonstrating the potential for mitochondrial involvement in neuromuscular transmission defects. We propose the establishment of a novel subcategorization for CMS--mitochondrial CMS, due to unifying clinical features and the potential for mitochondrial defects to impede transmission at the pre- and postsynapse. Finally, we highlight the potential of targeting the neuromuscular transmission in mitochondrial disease to improve patient outcomes