My library button
  • No image available

    Abstract: Study Design: Prospective cohort study. Objectives: The purpose of this prospective study was to evaluate a protocol for radiation-sparing kyphoplasty by assessing dosemetrically recorded radiation exposures to both patient and surgeon. Methods: This prospective clinical study examines the radiation exposure to patient and surgeon during single-level kyphoplasty in 32 thoracolumbar osteoporotic vertebral body fractures (12 OF 2, 9 OF 3, 11 OF 4 types) using a radiation aware surgical protocol between May 2017 and November 2019. The radiation exposure was measured at different locations using film, eye lens and ring dosemeters. Dose values are reported under consideration of lower detection limits of each dosemeter type. Results: A high proportion of dosemeter readings was below the lower detection limits, especially for the surgeon (>90%). Radiation exposure to the surgeon was highest at the unprotected thyroid gland (0.053 ± 0.047 mSv), however only slightly above the lower detection limit of dosemeters (0.044 mSv). Radiation exposure to the patient was highest at the chest (0.349 ± 0.414 mSv) and the gonad (0.186 ± 0.262 mSv). Fluoroscopy time, dose area product and number of fluoroscopic images were 46.0 ± 17.9 sec, 124 ± 109 cGy×cm2, and 35 ± 13 per kyphoplasty, respectively. Back pain significantly improved from 6.8 ± 1.6 to 2.5 ± 1.7 on the numeric rating scale on the first postoperative day (P 0.0001).brbrConclusions:brThe implementation of a strict intraoperative radiation protection protocol allows for safely performed kyphoplasty with ultra-low radiation exposure for the patient and surgeon without exceeding the annual occupational dose limits.brbrTrial registration:

  • No image available

    Abstract: Background: Transforaminal lumbar interbody fusion (TLIF) is one of the most frequently performed spinal fusion techniques, and this minimally invasive (MIS) approach has advantages over the traditional open approach. A drawback is the higher radiation exposure for the surgeon when conventional fluoroscopy (2D-fluoroscopy) is used. While computer-assisted navigation (CAN) reduce the surgeon's radiation exposure, the patient's exposure is higher. When we investigated 2D-fluoroscopically guided and 3D-navigated MIS TLIF in a randomized controlled trial, we detected low radiation doses for both the surgeon and the patient in the 2D-fluoroscopy group. Therefore, we extended the dataset, and herein, we report the radiation-sparing surgical technique of 2D-fluoroscopy-guided MIS TLIF. Methods: Monosegmental and bisegmental MIS TLIF was performed on 24 patients in adherence to advanced radiation protection principles and a radiation-sparing surgical protocol. Dedicated dosemeters recorded patient and surgeon radiation exposure. For safety assessment, pedicle screw accuracy was graded according to the Gertzbein-Robbins classification. Results: In total, 99 of 102 (97.1%) pedicle screws were correctly positioned (Gertzbein grade A/B). No breach caused neurological symptoms or necessitated revision surgery. The effective radiation dose to the surgeon was 41 ± 12 μSv per segment. Fluoroscopy time was 64 ± 34 s and 75 ± 43 radiographic images per segment were performed. Patient radiation doses at the neck, chest, and umbilical area were 65 ± 40, 123 ± 116, and 823 ± 862 μSv per segment, respectively. Conclusions: Using a dedicated radiation-sparing free-hand technique, 2D-fluoroscopy-guided MIS TLIF is successfully achievable with low radiation exposure to both the surgeon and the patient. With this technique, the maximum annual radiation exposure to the surgeon will not be exceeded, even with workday use