My library button
  • Book cover of Data Science from Scratch
    Joel Grus

     · 2019

    Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. With this updated second edition, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.

  • No image available

  • No image available

    Joel Grus

     · 2016

    As bibliotecas, estruturas, módulos e kits de ferramentas do data science são ótimas para desempenhá-lo mas, também, são uma ótima forma de mergulhar na disciplina sem ter, de fato, que entender data science. Neste livro, você aprenderá como os algoritmos e as ferramentas mais essenciais de data science funcionam ao implementá-los do zero. Se você tiver aptidão para matemática e alguma habilidade para programação, o autor Joel Grus lhe ajudará a se sentir confortável com matemática e estatística nos fundamentos de data science. Você precisará iniciar como um cientista de dados com habilidades de hackers. Atualmente, a grande massa de dados contém respostas para perguntas que ninguém nunca pensou em perguntar. Este guia fornece o conhecimento para desenterrar tais respostas. Obtenha um curso intensivo em Python; Aprenda o básico de álgebra linear, estatística e probabilidade - e entenda como e quando eles são usados em data science; Colete, explore, limpe, mude e manipule dados.

  • Book cover of Your Religion Is False
    Joel Grus

     · 2009

    The funniest book ever written about why your religion is false!Whether you're a Christian or a Jew, a Muslim or a Hindu, a Rasta or a Jain, an Environmentalist or a Cheondoist, a Scientologist or a Giant Stone Head Worshipper, your religion is false.But don't feel bad -- so is everyone else's! When you want to know what not to believe, this is the only book you need.In addition, you'll learn* Why "god" doesn't exist* Why there's no such thing as a "soul"* How to find "meaning" in a religion-less world* Which of your religious heroes are pedophiles* Why "religious tolerance" is a terrible ideaAnd, as a bonus, the greatest religious joke ever told. You can't afford not to read this book!

  • Book cover of Ten Essays on Fizz Buzz
    Joel Grus

     · 2020

    "This book is so good. I wish I'd written it." -- Tim Hopper (@tdhopper)"Highly recommended: a grand tour of computer science theory and practical software engineering, explored through the lens of 10 Fizz Buzz solutions in Python. Outstanding." -- Paco Nathan (@pacoid)"I'd never have thought a book about Fizz Buzz would make me a better programmer, but I was wrong. Joel in the course of 10 chapters does a broad survey of core Python concepts, software design and testing, mathematics, and more (including deep learning) using Fizz Buzz as the guiding example. It's that rare technical book that remains engaging, entertaining, and accessible." -- Binal Patel (@binalkp91)More real Python tips than any "Python tricks" book! From a Python beginner to an experienced ML practitioner, you're bound to learn something about the language and its application to a progressive level of algorithmic applications. Recommended for the anyone looking to "level up" their Python or problem solving skills! -- Tom Marthaler (@tmarthal)Fizz Buzz is the following (simple) problem: Print the numbers from 1 to 100, except that if the number is divisible by 3, instead print "fizz"; if the number is divisible by 5, instead print "buzz"; and if the number is divisible by 15, instead print "fizzbuzz".It originated as a children's game, but has since taken on a new life as a lowest-common-denominator litmus test for assessing computer programmers.If you are an experienced programmer, it is an extremely easy problem to solve. Because of this, it has taken on a third life as the prototypical bad interview problem. Everyone knows that it's the question you ask people to make sure that they're not completely incompetent as programmers. Accordingly, if your interviewer asks you to solve it, he's suggesting he thinks it possible that you're completely incompetent as a programmer. You would not be wrong to feel insulted!My association with this problem began in 2016, when I wrote a blog post called Fizz Buzz in Tensorflow, the (possibly fictional) story of one such insulted programmer who decided to show up his interviewer by approaching Fizz Buzz as a deep learning problem. This post went modestly viral, and ever since then I have been seen as a thought leader in the Fizz Buzz space.Accordingly, over the years I have come up with and/or collected various other stupid and/or clever ways of solving Fizz Buzz. I have not blogged about them, as I am not the sort of person who beats a joke to death, but occasionally I will tweet about them, and recently in response someone suggested that I write a book on "100 Ways of Writing Fizz Buzz in Python."Now, I could probably come up with 100 ways of solving Fizz Buzz, but most of them would not be very interesting. Luckily for you, I was able to come up with 10 that are interesting in various ways, each of which turned out to be a good launching-off point for (sometimes meandering) discussions of various aspects of coding, Python, Fizz Buzz, mathematics, software design, technical interviewing, and various other topics.Hence "Ten Essays on Fizz Buzz".In many ways this is a strange book. Its goal is not to teach you a specific field or a specific technology. I hope you will learn a lot from reading it, but it's not really a book that you'd read in order to learn anything in particular. Most technical books are about specific technical topics; this one sort of isn't.Nonetheless, it is a technical book. Each essay contains code that implements a different solution of Fizz Buzz. Each essay uses code to illustrate its ideas. Each essay represents my current best thinking about how to solve problems using code. If you have a coding job, you should feel no reluctance to expense this book to your employer

  • Book cover of Ciencia de datos desde cero. Segunda edición
    Joel Grus

     · 2023

    Para aprender de verdad ciencia de datos, no solamente es necesario dominar las herramientas (librerías de ciencia de datos, frameworks, módulos y kits de herramientas), sino también conviene comprender las ideas y principios subyacentes. Actualizada para Python 3.6, esta segunda edición de Ciencia de datos desde cero muestra cómo funcionan estas herramientas y algoritmos implementándolos desde el principio. Si ya tiene aptitudes para las matemáticas y ciertas habilidades de programación, el autor, Joel Grus, le ayudará a familiarizarse con las mates y las estadísticas, que son el núcleo de la ciencia de datos, y con las habilidades informáticas necesarias para iniciarse como científico de datos. Repleto de nueva información sobre deep learning (aprendizaje profundo), estadísticas y procesamiento del lenguaje natural, este libro actualizado le muestra cómo sacar lo mejor de la sobreabundancia de datos que actualmente nos rodea.

  • Book cover of Einführung in Data Science
    Joel Grus

     · 2019

    Neuauflage des Standardwerks, jetzt zu Python 3.6 Der idealer Einstieg in Data Science – didaktisch klug angelegt und gut nachvollziehbar Bietet mathematisches Hintergrundwissen und einen Crashkurs für Python Enthält neues Material zu Deep Learning, Statistik und Natural Language Processing Dieses Buch führt Sie in Data Science ein, indem es grundlegende Prinzipien der Datenanalyse erläutert und Ihnen geeignete Techniken und Werkzeuge vorstellt. Sie lernen nicht nur, wie Sie Bibliotheken, Frameworks, Module und Toolkits konkret einsetzen, sondern implementieren sie auch selbst. Dadurch entwickeln Sie ein tieferes Verständnis für die Zusammenhänge und erfahren, wie essenzielle Tools und Algorithmen der Datenanalyse im Kern funktionieren. Falls Sie Programmierkenntnisse und eine gewisse Sympathie für Mathematik mitbringen, unterstützt Joel Grus Sie dabei, mit den mathematischen und statistischen Grundlagen der Data Science vertraut zu werden und sich Programmierfähigkeiten anzueignen, die Sie für die Praxis benötigen. Dabei verwendet er Python: Die weit verbreitete Sprache ist leicht zu erlernen und bringt zahlreiche Bibliotheken für Data Science mit.

  • Book cover of Data science par la pratique
    Joel Grus

     · 2020

    Un ouvrage de référence pour les (futurs) data scientists Les bibliothèques, les frameworks, les modules et les boîtes à outils sont parfaits pour faire de la data science. Ils sont aussi un bon moyen de plonger dans cette discipline sans la comp

  • Book cover of Data Science par la pratique
    Joel Grus

     · 2017

    Un ouvrage de référence pour les (futurs) data scientists Les bibliothèques, les frameworks, les modules et les boîtes à outils sont parfaits pour faire de la data science. Ils sont aussi un bon moyen de plonger dans la discipline sans comprendre la data science. Dans cet ouvrage, vous apprendrez comment fonctionnent les outils et algorithmes les plus fondamentaux de la data science, en les réalisant à partir de zéro. Si vous êtes fort en maths et que vous connaissez la programmation, l'auteur, Joël Grus, vous aidera à vous familiariser avec les maths et les statistiques qui sont au coeur de la data science et à acquérir les compétences informatiques indispensables pour démarrer comme data scientist. La profusion des données d'aujourd'hui contient les réponses aux questions que personne n'a encore pensé à poser. Ce livre vous enseigne comment obtenir ces réponses. Suivez un cours accéléré de Python Apprenez les fondamentaux de l'algèbre linéaire, des statistiques et des probabilités, et comprenez comment et quand les utiliser en data science Collectez, explorez, nettoyez, bricolez et manipulez les données Plongez dans les bases de l'apprentissage automatique Implémentez des modèles comme les k plus proches voisins, le Bayes naïf, les régressions linéaire ou logistique, les arbres de décision, les réseaux neuronaux et le clustering Explorez les systèmes de recommandation, le traitement du langage naturel, l'analyse de réseau, MapReduce et les bases de données À qui s'adresse cet ouvrage ? Aux développeurs, statisticiens, étudiants et chefs de projet ayant à résoudre des problèmes de data science. Aux data scientists, mais aussi à toute personne curieuse d'avoir une vue d'ensemble de l'état de l'art de ce métier du futur.

  • Book cover of Data science con python. Dai fondamenti al machine learning