Late-1990s developments in the study of thermophiles have had considerable significance on theories of evolution. These micro-organisms are able to thrive at temperatures near or even above 100 degrees Celsius, and scientists have begun to study their biology in an attempt to provide clues about the beginnings of life on our planet. Researchers
No image available
· 2008
Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86°C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were transcribed in situ in one spring and the transcripts were closely related to the amoA genes amplified from the same spring. Our study demonstrates the global occurrence of putative archaeal amoA genes in a wide variety of terrestrial hot springs and suggests that geography may play an important role in selecting different assemblages of AOA.
No image available
No image available
· 1997
A thermophilic, anaerobic, spore-forming bacterium (strain JW/AS-Y6T) was isolated from a mixed sediment-water sample from a hot spring (Calcite Spring area) at Yellowstone National Park. The vegetative cells of this organism were straight rods, 0.4 to 0.6 by 3.0 to 6.5 ?.m. Cells occurred singly and exhibited a slight tumbling motility. They formed round refractile endospores in terminal swollen sporangia. Cells stained gram positive. The temperature range for growth at pH 6.8 was 43 to 65°C, with optimum growth at 58°C. The range for growth at 60°C (pH60C; with the pH meter calibrated at 60°C) was 5.9 to 7.8, with an optimum pH600 of 6.3 to 6.5. The substrates utilized included glycerol, glucose, fructose, mannose, galactose, xylose, lactate, glycerate, pyruvate, and yeast extract. In the presence of CO2, acetate was the only organic product from glycerol and carbohydrate fermentation. No H2 was produced during growth. The strain was not able to grow chemolitho-trophically at the expense of H2-CO2; however, suspensions of cells in the exponential growth phase consumed H2. The bacterium reduced fumarate to succinate and thiosulfate to elemental sulfur. Growth was inhibited by ampicillin, chloramphenicol, erythromycin, rifampin, and tetracycline, but not by streptomycin. The G+C content of the DNA was 54.5 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolate in the Gram type-positive Bacillus-Clostridium subphylum. On the basis of physiological properties and phylogenetic analysis we propose that the isolated strain constitutes a new species, Moorella glycerini; the type strain is JW/AS-Y6 (= DSM 11254 = ATCC 700316).
No image available
· 1997
A strain of a thermophilic, anaerobic, dissimilatory, Fe(III)-reducing bacterium, Thermoterrabacterium ferrireducens gen. nov., sp. nov. (type strain JW/AS-Y7T; DSM 11255), was isolated from hot springs in Yellowstone National Park and New Zealand. The gram-positive-staining cells occurred singly or in pairs as straight to slightly curved rods, 0.3 to 0.4 by 1.6 to 2.7 ?m, with rounded ends and exhibited a tumbling motility. Spores were not observed. The temperature range for growth was 50 to 74°C with an optimum at 65°C. The pH range for growth at 65°C was from 5.5 to 7.6, with an optimum at 6.0 to 6.2. The organism coupled the oxidation of glycerol to reduction of amorphous Fe(III) oxide or Fe(III) citrate as an electron acceptor. In the presence as well as in the absence of Fe(III) and in the presence of CO2, glycerol was metabolized by incomplete oxidation to acetate as the only organic metabolic product; no H2 was produced during growth. The organism utilized glycerol, lactate, 1,2-propanediol, glycerate, pyruvate, glucose, fructose, mannose, and yeast extract as substrates. In the presence of Fe(III) the bacterium utilized molecular hydrogen. The organism reduced 9,10-anthraquinone-2,6-disulfonic acid, fumarate (to succinate), and thiosulfate (to elemental sulfur) but did not reduce MnO2, nitrate, sulfate, sulfite, or elemental sulfur. The G+C content of the DNA was 41 mol% (as determined by high-performance liquid chromatography). The 16S ribosomal DNA sequence analysis placed the isolated strain as a member of a new genus within the gram-type-positive Bacillus-Clostridium subphylum.