No image available
Spinal instrumentation is commonly used to stabilize the multi-level strut- grafted cervical spine. There are no standard tissue-based testing protocols for evaluating spinal devices. An improved biomechanical testing protocol was developed to study the strut-graft mechanics of the instrumented cervical spine in flexion and extension. The biomechanical stability of two different anterior cervical plating systems were evaluated and compared to the harvested condition. A force sensing strut-graft (fssg) was used to measure the axial compressive load. Parameters of stiffness, segmental vertebral motion, and strut-graft loads were statistically compared with a one-way anova (p
No image available