My library button
  • Book cover of Algorithms for Computer Algebra

    Algorithms for Computer Algebra is the first comprehensive textbook to be published on the topic of computational symbolic mathematics. The book first develops the foundational material from modern algebra that is required for subsequent topics. It then presents a thorough development of modern computational algorithms for such problems as multivariate polynomial arithmetic and greatest common divisor calculations, factorization of multivariate polynomials, symbolic solution of linear and polynomial systems of equations, and analytic integration of elementary functions. Numerous examples are integrated into the text as an aid to understanding the mathematical development. The algorithms developed for each topic are presented in a Pascal-like computer language. An extensive set of exercises is presented at the end of each chapter. Algorithms for Computer Algebra is suitable for use as a textbook for a course on algebraic algorithms at the third-year, fourth-year, or graduate level. Although the mathematical development uses concepts from modern algebra, the book is self-contained in the sense that a one-term undergraduate course introducing students to rings and fields is the only prerequisite assumed. The book also serves well as a supplementary textbook for a traditional modern algebra course, by presenting concrete applications to motivate the understanding of the theory of rings and fields.

  • Book cover of Maple V Library Reference Manual

    The design and implementation of the Maple system is an on-going project of the Symbolic Com putation Group at the University of Waterloo in Ontario, Canada. This manual corresponds with version V (roman numeral five) of the Maple system. The on-line help subsystem can be invoked from within a Maple session to view documentation on specific topics. In particular, the command ?updates points the user to documentation updates for each new version of Maple. The Maple project was first conceived in the autumn of 1980, growing out of discussions on the state of symbolic computation at the University of Waterloo. The authors wish to acknowledge many fruitful discussions with colleagues at the University of Waterloo, particularly Morven Gen tleman, Michael Malcolm, and Frank Tompa. It was recognized in these discussions that none ofthe locaIly-available systems for symbolic computation provided the facilities that should be expected for symbolic computation in modern computing environments. We concluded that since the basic design decisions for the then-current symbolic systems such as ALTRAN, CAMAL, REDUCE, and MACSYMA were based on 1960's computing technology, it would be wise to design a new system "from scratch". Thus we could take advantage of the software engineering technology which had become available in recent years, as well as drawing from the lessons of experience. Maple's basic features (elementary data structures, Input/output, arithmetic with numbers, and elementary simplification) are coded in a systems programming language for efficiency.

  • Book cover of First Leaves: A Tutorial Introduction to Maple V

    This tutorial shows how to use Maple both as a calculator with instant access to hundreds of high-level math routines and as a programming language for more demanding tasks. It covers topics such as the basic data types and statements in the Maple language. It explains the differences between numeric computation and symbolic computation and illustrates how both are used in Maple. Extensive "how-to" examples are used throughout the tutorial to show how common types of calculations can be expressed easily in Maple. The manual also uses many graphics examples to illustrate the way in which 2D and 3D graphics can aid in understanding the behavior of functions.

  • Book cover of Maple V Language Reference Manual

    The design and implementation of the Maple system is an on-going project of the Symbolic Com putation Group at the University of Waterloo in Ontario, Canada. This manual corresponds with version V (roman numeral five) of the Maple system. The on-line help subsystem can be invoked from within a Maple session to view documentation on specific topics. In particular, the command ?updates points the user to documentation updates for each new version of Maple. The Maple project was first conceived in the autumn of 1980 growing out of discussions on the state of symbolic computation at the University of Waterloo. The authors wish to acknowledge many fruitful discussions with colleagues at the University of Waterloo, particularly Morven Gen tleman, Michael Malcolm, and Frank Tompa. It was recognized in these discussions that none of the locally-available systems for symbolic computation provided the facilities that should be expected for symbolic computation in modern computing environments. We concluded that since the basic design decisions for the then-current symbolic systems such as ALTRAN, CAMAL, REDUCE, and to design a new system MACSYMA were based on 1960's computing technology, it would be wise from scratch taking advantage of the software engineering technology which had become available since then, as well as drawing from the lessons of experience. Maple's basic features (e. g. elementary data structures, input/output, arithmetic with numbers, and elementary simplification) are coded in a systems programming language for efficiency.

  • No image available

  • No image available

  • No image available

  • No image available

  • No image available

  • No image available