· 2014
Kenneth Raper tells how dictyostelids are isolated, cultivated, and conserved in the laboratory; how myxamoebae aggregate to form multicellular pseudoplasmodia; how fructifications arise by transformation of amoeboid cells into stalk cells and spores; and how similar cells can, under certain conditions, enter a sexual phase. For each known dictyostelid Professor Raper includes a complete description and photographic illustrations; one new species is described. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
No image available
Kenneth Raper tells how dictyostelids are isolated, cultivated, and conserved in the laboratory; how myxamoebae aggregate to form multicellular pseudoplasmodia; how fructifications arise by transformation of amoeboid cells into stalk cells and spores; and how similar cells can, under certain conditions, enter a sexual phase. For each known dictyostelid Professor Raper includes a complete description and photographic illustrations; one new species is described. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Micro-organisms that successfully develop universality of distribution and omnivorousness of habit generally belong to groups characterized by great diversification in appearance, in morphology, and in physiological adaptation. Because of this diversity investigators encounter organisms varying in minor details and describe them as new. Of the fungi that are universally distributed and significant in incipient spoilage of organic products useful to man, members of the Aspergillus glaucus group are among the most important in their action and striking in their habit.
Systematik und Phylogenetik, Pilze
No image available
No image available
No image available