My library button
  • Book cover of Black Holes and Time Warps
    Kip S Thorne

     · 1994

    In this masterfully written and brilliantly informed work, Dr. Rhorne, the Feynman Professor of Theoretical Physics at Caltech, leads readers through an elegant, always human, tapestry of interlocking themes, answering the great question: what principles control our universe and why do physicists think they know what they know? Features an introduction by Stephen Hawking.

  • Book cover of The Science of Interstellar
    Kip Thorne

     · 2014

    A journey through the otherworldly science behind Christopher Nolan’s award-winning film, Interstellar, from executive producer and Nobel Prize-winning physicist Kip Thorne. Interstellar, from acclaimed filmmaker Christopher Nolan, takes us on a fantastic voyage far beyond our solar system. Yet in The Science of Interstellar, Kip Thorne, the Nobel prize-winning physicist who assisted Nolan on the scientific aspects of Interstellar, shows us that the movie’s jaw-dropping events and stunning, never-before-attempted visuals are grounded in real science. Thorne shares his experiences working as the science adviser on the film and then moves on to the science itself. In chapters on wormholes, black holes, interstellar travel, and much more, Thorne’s scientific insights—many of them triggered during the actual scripting and shooting of Interstellar—describe the physical laws that govern our universe and the truly astounding phenomena that those laws make possible. Interstellar and all related characters and elements are trademarks of and © Warner Bros. Entertainment Inc. (s14).

  • Book cover of Modern Classical Physics

    A groundbreaking text and reference book on twenty-first-century classical physics and its applications This first-year graduate-level text and reference book covers the fundamental concepts and twenty-first-century applications of six major areas of classical physics that every masters- or PhD-level physicist should be exposed to, but often isn't: statistical physics, optics (waves of all sorts), elastodynamics, fluid mechanics, plasma physics, and special and general relativity and cosmology. Growing out of a full-year course that the eminent researchers Kip Thorne and Roger Blandford taught at Caltech for almost three decades, this book is designed to broaden the training of physicists. Its six main topical sections are also designed so they can be used in separate courses, and the book provides an invaluable reference for researchers. Presents all the major fields of classical physics except three prerequisites: classical mechanics, electromagnetism, and elementary thermodynamics Elucidates the interconnections between diverse fields and explains their shared concepts and tools Focuses on fundamental concepts and modern, real-world applications Takes applications from fundamental, experimental, and applied physics; astrophysics and cosmology; geophysics, oceanography, and meteorology; biophysics and chemical physics; engineering and optical science and technology; and information science and technology Emphasizes the quantum roots of classical physics and how to use quantum techniques to elucidate classical concepts or simplify classical calculations Features hundreds of color figures, some five hundred exercises, extensive cross-references, and a detailed index An online illustration package is available

  • Book cover of Black Holes & Time Warps: Einstein's Outrageous Legacy (Commonwealth Fund Book Program)
    Kip Thorne

     · 1995

    Winner of the 2017 Nobel Prize in Physics Ever since Albert Einstein's general theory of relativity burst upon the world in 1915 some of the most brilliant minds of our century have sought to decipher the mysteries bequeathed by that theory, a legacy so unthinkable in some respects that even Einstein himself rejected them. Which of these bizarre phenomena, if any, can really exist in our universe? Black holes, down which anything can fall but from which nothing can return; wormholes, short spacewarps connecting regions of the cosmos; singularities, where space and time are so violently warped that time ceases to exist and space becomes a kind of foam; gravitational waves, which carry symphonic accounts of collisions of black holes billions of years ago; and time machines, for traveling backward and forward in time. Kip Thorne, along with fellow theorists Stephen Hawking and Roger Penrose, a cadre of Russians, and earlier scientists such as Oppenheimer, Wheeler and Chandrasekhar, has been in the thick of the quest to secure answers. In this masterfully written and brilliantly informed work of scientific history and explanation, Dr. Thorne, a Nobel Prize-winning physicist and the Feynman Professor of Theoretical Physics Emeritus at Caltech, leads his readers through an elegant, always human, tapestry of interlocking themes, coming finally to a uniquely informed answer to the great question: what principles control our universe and why do physicists think they know the things they think they know? Stephen Hawking's A Brief History of Time has been one of the greatest best-sellers in publishing history. Anyone who struggled with that book will find here a more slowly paced but equally mind-stretching experience, with the added fascination of a rich historical and human component. Winner of the Phi Beta Kappa Award in Science.

  • Book cover of The Warped Side of Our Universe
    Kip Thorne

     · 2023

    Epic verse and pulsating paintings merge to shed light on time travel, black holes, gravitational waves and the birth of the universe.

  • Book cover of Gravitation

    First published in 1973, Gravitation is a landmark graduate-level textbook that presents Einstein’s general theory of relativity and offers a rigorous, full-year course on the physics of gravitation. Upon publication, Science called it “a pedagogic masterpiece,” and it has since become a classic, considered essential reading for every serious student and researcher in the field of relativity. This authoritative text has shaped the research of generations of physicists and astronomers, and the book continues to influence the way experts think about the subject. With an emphasis on geometric interpretation, this masterful and comprehensive book introduces the theory of relativity; describes physical applications, from stars to black holes and gravitational waves; and portrays the field’s frontiers. The book also offers a unique, alternating, two-track pathway through the subject. Material focusing on basic physical ideas is designated as Track 1 and formulates an appropriate one-semester graduate-level course. The remaining Track 2 material provides a wealth of advanced topics instructors can draw on for a two-semester course, with Track 1 sections serving as prerequisites. This must-have reference for students and scholars of relativity includes a new preface by David Kaiser, reflecting on the history of the book’s publication and reception, and a new introduction by Charles Misner and Kip Thorne, discussing exciting developments in the field since the book’s original publication. The book teaches students to: Grasp the laws of physics in flat and curved spacetime Predict orders of magnitude Calculate using the principal tools of modern geometry Understand Einstein's geometric framework for physics Explore applications, including neutron stars, Schwarzschild and Kerr black holes, gravitational collapse, gravitational waves, cosmology, and so much more

  • Book cover of Optics

    A groundbreaking textbook on twenty-first-century waves of all sorts and their applications Kip Thorne and Roger Blandford’s monumental Modern Classical Physics is now available in five stand-alone volumes that make ideal textbooks for individual graduate or advanced undergraduate courses on statistical physics; optics; elasticity and fluid dynamics; plasma physics; and relativity and cosmology. Each volume teaches the fundamental concepts, emphasizes modern, real-world applications, and gives students a physical and intuitive understanding of the subject. Optics is an essential introduction to a resurgent subject. “Optics” originally referred to the study of light, but today the field encompasses all types of waves, including electromagnetic waves, from gamma rays to radio waves; gravitational waves; waves in solids, fluids, and plasmas; and quantum waves. The past few decades have seen revolutions in optics—amazing advances in nonlinear optics technology, a growing understanding of optical phenomena throughout the natural world, and an increasing appreciation of the wide-ranging applicability of optics’ central principles. Optics shows how and why this subject—which was once a standard part of physics curricula—should again be routinely taught to physics students, as well as to students in engineering, computer science, and the natural sciences. Includes many exercise problems Features color figures, suggestions for further reading, extensive cross-references, and a detailed index Optional “Track 2” sections make this an ideal book for a one-quarter, half-semester, or full-semester course An online illustration package is available to professors The five volumes, which are available individually as paperbacks and ebooks, are Statistical Physics; Optics; Elasticity and Fluid Dynamics; Plasma Physics; and Relativity and Cosmology.

  • Book cover of Plasma Physics

    "Kip Thorne and Roger Blandford's monumental Modern Classical Physics is now available in five stand-alone volumes that make ideal textbooks for individual graduate or advanced undergraduate courses on statistical physics; optics; elasticity and fluid dynamics; plasma physics; and relativity and cosmology. Each volume teaches the fundamental concepts, emphasizes modern, real-world applications, and gives students a physical and intuitive understanding of the subject. Relativity and Cosmology is an essential introduction to the subject, including remarkable recent advances. Written by award-winning physicists who have made fundamental contributions to the field and taught it for decades, the book differs from most others on the subject in important ways. It highlights recent transformations in our understanding of black holes, gravitational waves, and the cosmos; it emphasizes the physical interpretation of general relativity in terms of measurements made by observers; it explains the physics of the Riemann tensor in terms of tidal forces, differential frame dragging, and associated field lines; it presents an astrophysically oriented description of spinning black holes; it gives a detailed analysis of an incoming gravitational wave's interaction with a detector such as LIGO; and it provides a comprehensive, in-depth account of the universe's evolution, from its earliest moments to the present. While the book is designed to be used for a one-quarter or full-semester course, it goes deep enough to provide a foundation for understanding and participating in some areas of cutting-edge research. Includes many exercise problems Features color figures, suggestions for further reading, extensive cross-references, and a detailed index Optional "Track 2" sections make this an ideal book for a one-quarter or one-semester course An online illustration package is available to professors The five volumes, which are available individually as paperbacks and ebooks, are Statistical Physics; Optics; Elasticity and Fluid Dynamics; Plasma Physics; and Relativity and Cosmology." --

  • Book cover of The Warped Side of Our Universe: An Odyssey through Black Holes, Wormholes, Time Travel, and Gravitational Waves
    Kip Thorne

     · 2023

    Epic verse and pulsating paintings merge to shed light on time travel, black holes, gravitational waves and the birth of the universe. Nearly two decades in the making, The Warped Side of Our Universe marks the historic collaboration of Nobel Laureate Kip Thorne and award-winning artist Lia Halloran. It brings to vivid life the wonders and wildness of our universe’s “Warped Side”—objects and phenomena made from warped space and time, from colliding black holes and collapsing wormholes to twisting space vortices and down-cascading time. Through poetic verse and otherworldly paintings, the authors explicate Thorne’s and colleagues’ astrophysical discoveries and speculations, with an epic narrative that asks: How did the universe begin? Can anything travel backward in time? And what weird and marvelous phenomena inhabit the Warped Side? Featuring more than 100 paintings, including a soaring Stephen Hawking, this one-of-a-kind volume, with its multiple gatefolds, takes us on an Odyssean voyage into and through the Warped Side of Our Universe.

  • Book cover of Elasticity and Fluid Dynamics

    "Kip Thorne and Roger Blandford's monumental Modern Classical Physics is now available in five stand-alone volumes that make ideal textbooks for individual graduate or advanced undergraduate courses on statistical physics; optics; elasticity and fluid dynamics; plasma physics; and relativity and cosmology. Each volume teaches the fundamental concepts, emphasizes modern, real-world applications, and gives students a physical and intuitive understanding of the subject. Statistical Physics is an essential introduction that is different from others on the subject because of its unique approach, which is coordinate-independent and geometric; embraces and elucidates the close quantum-classical connection and the relativistic and Newtonian domains; and demonstrates the power of statistical techniques--particularly statistical mechanics--by presenting applications not only to the usual kinds of things, such as gases, liquids, solids, and magnetic materials, but also to a much wider range of phenomena, including black holes, the universe, information and communication, and signal processing amid noise. Includes many exercise problems Features color figures, suggestions for further reading, extensive cross-references, and a detailed index Optional "Track 2" sections make this an ideal book for a one-quarter, half-semester, or full-semester course An online illustration package is available to professors The five volumes, which are available individually as paperbacks and ebooks, are Statistical Physics; Optics; Elasticity and Fluid Dynamics; Plasma Physics; and Relativity and Cosmology." --Amazon.com.