My library button
  • No image available

    Abstract: Background Mitochondrial presequence proteases perform fundamental functions as they process about 70 % of all mitochondrial preproteins that are encoded in the nucleus and imported posttranslationally. The mitochondrial intermediate presequence protease MIP/Oct1, which carries out precursor processing, has not yet been established to have a role in human disease. Methods Whole exome sequencing was performed on four unrelated probands with left ventricular non-compaction (LVNC), developmental delay (DD), seizures, and severe hypotonia. Proposed pathogenic variants were confirmed by Sanger sequencing or array comparative genomic hybridization. Functional analysis of the identified MIP variants was performed using the model organism Saccharomyces cerevisiae as the protein and its functions are highly conserved from yeast to human. Results Biallelic single nucleotide variants (SNVs) or copy number variants (CNVs) in MIPEP, which encodes MIP, were present in all four probands, three of whom had infantile/childhood death. Two patients had compound heterozygous SNVs (p.L582R/p.L71Q and p.E602*/p.L306F) and one patient from a consanguineous family had a homozygous SNV (p.K343E). The fourth patient, identified through the GeneMatcher tool, a part of the Matchmaker Exchange Project, was found to have inherited a paternal SNV (p.H512D) and a maternal CNV (1.4-Mb deletion of 13q12.12) that includes MIPEP. All amino acids affected in the patients' missense variants are highly conserved from yeast to human and therefore S. cerevisiae was employed for functional analysis (for p.L71Q, p.L306F, and p.K343E). The mutations p.L339F (human p.L306F) and p.K376E (human p.K343E) resulted in a severe decrease of Oct1 protease activity and accumulation of non-processed Oct1 substrates and consequently impaired viability under respiratory growth conditions. The p.L83Q (human p.L71Q) failed to localize to the mitochondria. Conclusions Our findings reveal for the first time the role of the mitochondrial intermediate peptidase in human disease. Loss of MIP function results in a syndrome which consists of LVNC, DD, seizures, hypotonia, and cataracts. Our approach highlights the power of data exchange and the importance of an interrelationship between clinical and research efforts for disease gene discovery

  • No image available

    Abstract: The mitochondrial proteome is built mainly by import of nuclear-encoded precursors, which are targeted mostly by cleavable presequences. Presequence processing upon import is essential for proteostasis and survival, but the consequences of dysfunctional protein maturation are unknown. We find that impaired presequence processing causes accumulation of precursors inside mitochondria that form aggregates, which escape degradation and unexpectedly do not cause cell death. Instead, cells survive via activation of a mitochondrial unfolded protein response (mtUPR)-like pathway that is triggered very early after precursor accumulation. In contrast to classical stress pathways, this immediate response maintains mitochondrial protein import, membrane potential, and translation through translocation of the nuclear HMG-box transcription factor Rox1 to mitochondria. Rox1 binds mtDNA and performs a TFAM-like function pivotal for transcription and translation. Induction of early mtUPR provides a reversible stress model to mechanistically dissect the initial steps in mtUPR pathways with the stressTFAM Rox1 as the first line of defense