· 2012
This book is designed for a topics course in computational number theory. It is based around a number of difficult old problems that live at the interface of analysis and number theory. Some of these problems are the following: The Integer Chebyshev Problem. Find a nonzero polynomial of degree n with integer eoeffieients that has smallest possible supremum norm on the unit interval. Littlewood's Problem. Find a polynomial of degree n with eoeffieients in the set { + 1, -I} that has smallest possible supremum norm on the unit disko The Prouhet-Tarry-Escott Problem. Find a polynomial with integer co effieients that is divisible by (z - l)n and has smallest possible 1 norm. (That 1 is, the sum of the absolute values of the eoeffieients is minimal.) Lehmer's Problem. Show that any monie polynomial p, p(O) i- 0, with in teger coefficients that is irreducible and that is not a cyclotomic polynomial has Mahler measure at least 1.1762 .... All of the above problems are at least forty years old; all are presumably very hard, certainly none are completely solved; and alllend themselves to extensive computational explorations. The techniques for tackling these problems are various and include proba bilistic methods, combinatorial methods, "the circle method," and Diophantine and analytic techniques. Computationally, the main tool is the LLL algorithm for finding small vectors in a lattice. The book is intended as an introduction to a diverse collection of techniques.
· 2010
A quiet revolution in mathematical computing and scientific visualization took place in the latter half of the 20th century. These developments have dramatically enhanced modes of mathematical insight and opportunities for "exploratory" computational experimentation. This volume collects the experimental and computational contributions of Jonathan and Peter Borwein over the past quarter century.
· 2012
How do we recognize that the number . 93371663 . . . is actually 2 IoglQ(e + 7r)/2 ? Gauss observed that the number 1. 85407467 . . . is (essentially) a rational value of an elliptic integral-an observation that was critical in the development of nineteenth century analysis. How do we decide that such a number is actually a special value of a familiar function without the tools Gauss had at his disposal, which were, presumably, phenomenal insight and a prodigious memory? Part of the answer, we hope, lies in this volume. This book is structured like a reverse telephone book, or more accurately, like a reverse handbook of special function values. It is a list of just over 100,000 eight-digit real numbers in the interval [0,1) that arise as the first eight digits of special values of familiar functions. It is designed for people, like ourselves, who encounter various numbers computationally and want to know if these numbers have some simple form. This is not a particularly well-defined endeavor-every eight-digit number is rational and this is not interesting. However, the chances of an eight digit number agreeing with a small rational, say with numerator and denominator less than twenty-five, is small. Thus the list is comprised primarily of special function evaluations at various algebraic and simple transcendental values. The exact numbers included are described below. Each entry consists of the first eight digits after the decimal point of the number in question.
This book documents the history of pi from the dawn of mathematical time to the present. The story of pi reflects the most seminal, the most serious, and sometimes the most whimsical aspects of mathematics. Much significant mathematics originates with pi, and many great mathematicians have contributed to this story's unfolding. Pi is one of the few concepts in mathematics whose mention evokes a response of recognition and interest in those not concerned professionally with the subject. Yet, despite this, no source book on pi has been published. One of the beauties of the literature on pi is that it allows for the inclusion of very modern, yet still accessible, mathematics. Mathematicians and historians of mathematics will find this book indispensable. Teachers at every level can find here ample resources for anything from individual talks and student projects to special topics courses. The literature on pi collected herein falls into various classes. First and foremost there is a selection from the mathematical and computational literature of four millennia. There is also a variety of historical studies on the cultural significance of the number. Additionally, there is a selection of pieces that are anecdotal, fanciful, or simply amusing.
No image available
No image available
No image available
No author available
No image available
No author available