· 2020
In this revolutionary book, a renowned computer scientist explains the importance of teaching children the basics of computing and how it can prepare them to succeed in the ever-evolving tech world. Computers have completely changed the way we teach children. We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers. Technology changes every day, but the basic ways that computers can help us learn remain. For thousands of teachers and parents who have sought creative ways to help children learn with computers, Mindstorms is their bible.
The first systematic study of parallelism in computation by two pioneers in the field. Reissue of the 1988 Expanded Edition with a new foreword by Léon Bottou In 1969, ten years after the discovery of the perceptron—which showed that a machine could be taught to perform certain tasks using examples—Marvin Minsky and Seymour Papert published Perceptrons, their analysis of the computational capabilities of perceptrons for specific tasks. As Léon Bottou writes in his foreword to this edition, “Their rigorous work and brilliant technique does not make the perceptron look very good.” Perhaps as a result, research turned away from the perceptron. Then the pendulum swung back, and machine learning became the fastest-growing field in computer science. Minsky and Papert's insistence on its theoretical foundations is newly relevant. Perceptrons—the first systematic study of parallelism in computation—marked a historic turn in artificial intelligence, returning to the idea that intelligence might emerge from the activity of networks of neuron-like entities. Minsky and Papert provided mathematical analysis that showed the limitations of a class of computing machines that could be considered as models of the brain. Minsky and Papert added a new chapter in 1987 in which they discuss the state of parallel computers, and note a central theoretical challenge: reaching a deeper understanding of how “objects” or “agents” with individuality can emerge in a network. Progress in this area would link connectionism with what the authors have called “society theories of mind.”
The first systematic study of parallelism in computation by two pioneers in the field. Reissue of the 1988 Expanded Edition with a new foreword by Léon Bottou In 1969, ten years after the discovery of the perceptron—which showed that a machine could be taught to perform certain tasks using examples—Marvin Minsky and Seymour Papert published Perceptrons, their analysis of the computational capabilities of perceptrons for specific tasks. As Léon Bottou writes in his foreword to this edition, “Their rigorous work and brilliant technique does not make the perceptron look very good.” Perhaps as a result, research turned away from the perceptron. Then the pendulum swung back, and machine learning became the fastest-growing field in computer science. Minsky and Papert's insistence on its theoretical foundations is newly relevant. Perceptrons—the first systematic study of parallelism in computation—marked a historic turn in artificial intelligence, returning to the idea that intelligence might emerge from the activity of networks of neuron-like entities. Minsky and Papert provided mathematical analysis that showed the limitations of a class of computing machines that could be considered as models of the brain. Minsky and Papert added a new chapter in 1987 in which they discuss the state of parallel computers, and note a central theoretical challenge: reaching a deeper understanding of how “objects” or “agents” with individuality can emerge in a network. Progress in this area would link connectionism with what the authors have called “society theories of mind.”
No image available