No image available
No image available
· 2023
Abstract: Rationale: To establish a spatially exact co-registration procedure between in vivo multiparametric magnetic resonance imaging (mpMRI) and (immuno)histopathology of soft tissue sarcomas (STS) to identify imaging parameters that reflect radiation therapy response of STS. Methods: The mpMRI-Protocol included diffusion-weighted (DWI), intravoxel-incoherent motion (IVIM), and dynamic contrast-enhancing (DCE) imaging. The resection specimen was embedded in 6.5% agarose after initial fixation in formalin. To ensure identical alignment of histopathological sectioning and in vivo imaging, an ex vivo MRI scan of the specimen was rigidly co-registered with the in vivo mpMRI. The deviating angulation of the specimen to the in vivo location of the tumor was determined. The agarose block was trimmed accordingly. A second ex vivo MRI in a dedicated localizer with a 4 mm grid was performed, which was matched to a custom-built sectioning machine. Microtomy sections were stained with hematoxylin and eosin. Immunohistochemical staining was performed with anti-ALDH1A1 antibodies as a radioresistance and anti-MIB1 antibodies as a proliferation marker. Fusion of the digitized microtomy sections with the in vivo mpMRI was accomplished through nonrigid co-registration to the in vivo mpMRI. Co-registration accuracy was qualitatively assessed by visual assessment and quantitatively evaluated by computing target registration errors (TRE). Results: The study sample comprised nine tumor sections from three STS patients. Visual assessment after nonrigid co-registration showed a strong morphological correlation of the histopathological specimens with ex vivo MRI and in vivo mpMRI after neoadjuvant radiation therapy. Quantitative assessment of the co-registration procedure using TRE analysis of different pairs of pathology and MRI sections revealed highly accurate structural alignment, with a total median TRE of 2.25 mm (histology - ex vivo MRI), 2.22 mm (histology - in vivo mpMRI), and 2.02 mm (ex vivo MRI - in vivo mpMRI). There was no significant difference between TREs of the different pairs of sections or caudal, middle, and cranial tumor parts, respectively. Conclusion: Our initial results show a promising approach to obtaining accurate co-registration between histopathology and in vivo MRI for STS. In a larger cohort of patients, the method established here will enable the prospective identification and validation of in vivo imaging biomarkers for radiation therapy response prediction and monitoring in STS patients via precise molecular and cellular correlation
No image available
No image available
No image available
· 2023
Abstract: Purpose Artificial intelligence in computer vision has been increasingly adapted in clinical application since the implementation of neural networks, potentially providing incremental information beyond the mere detection of pathology. As its algorithmic approach propagates input variation, neural networks could be used to identify and evaluate relevant image features. In this study, we introduce a basic dataset structure and demonstrate a pertaining use case. Methods A multidimensional classification of ankle x-rays (n = 1493) rating a variety of features including fracture certainty was used to confirm its usability for separating input variations. We trained a customized neural network on the task of fracture detection using a state-of-the-art preprocessing and training protocol. By grouping the radiographs into subsets according to their image features, the influence of selected features on model performance was evaluated via selective training. Results The models trained on our dataset outperformed most comparable models of current literature with an ROC AUC of 0.943. Excluding ankle x-rays with signs of surgery improved fracture classification performance (AUC 0.955), while limiting the training set to only healthy ankles with and without fracture had no consistent effect. Conclusion Using multiclass datasets and comparing model performance, we were able to demonstrate signs of surgery as a confounding factor, which, following elimination, improved our model. Also eliminating pathologies other than fracture in contrast had no effect on model performance, suggesting a beneficial influence of feature variability for robust model training. Thus, multiclass datasets allow for evaluation of distinct image features, deepening our understanding of pathology imaging
No image available
· 2023
Abstract: Objectives This study evaluated the accuracy of deep neural patchworks (DNPs), a deep learning-based segmentation framework, for automated identification of 60 cephalometric landmarks (bone-, soft tissue- and tooth-landmarks) on CT scans. The aim was to determine whether DNP could be used for routine three-dimensional cephalometric analysis in diagnostics and treatment planning in orthognathic surgery and orthodontics. Methods: Full skull CT scans of 30 adult patients (18 female, 12 male, mean age 35.6 years) were randomly divided into a training and test data set (each n = 15). Clinician A annotated 60 landmarks in all 30 CT scans. Clinician B annotated 60 landmarks in the test data set only. The DNP was trained using spherical segmentations of the adjacent tissue for each landmark. Automated landmark predictions in the separate test data set were created by calculating the center of mass of the predictions. The accuracy of the method was evaluated by comparing these annotations to the manual annotations. Results: The DNP was successfully trained to identify all 60 landmarks. The mean error of our method was 1.94 mm (SD 1.45 mm) compared to a mean error of 1.32 mm (SD 1.08 mm) for manual annotations. The minimum error was found for landmarks ANS 1.11 mm, SN 1.2 mm, and CP_R 1.25 mm. Conclusion: The DNP-algorithm was able to accurately identify cephalometric landmarks with mean errors
No image available