No image available
No image available
Abstract: Blinks and saccades, both ubiquitous in natural viewing conditions, cause rapid changes of visual inputs that are hardly consciously perceived. The neural dynamics in early visual areas of the human brain underlying this remarkable visual stability are still incompletely understood. We used electrocorticography (ECoG) from electrodes directly implanted on the human early visual areas V1, V2, V3d/v, V4d/v and the fusiform gyrus to investigate blink- and saccade-related neuronal suppression effects during non-experimental, free viewing conditions. We found a characteristic, biphasic, broadband gamma power decrease-increase pattern in all investigated visual areas. During saccades, a decrease in gamma power clearly preceded eye movement onset, at least in V1. This may indicate that cortical information processing is actively suppressed in human early visual areas before and during saccades, which then possibly mediates perceptual visual suppression. The following eye movement offset-related increase in gamma power may indicate the recovery of visual perception and the resumption of visual processing
No image available
· 2013
Abstract: In neuronal population signals, including the electroencephalogram (EEG) and electrocorticogram (ECoG), the low-frequency component (LFC) is particularly informative about motor behavior and can be used for decoding movement parameters for brain-machine interface (BMI) applications. An idea previously expressed, but as of yet not quantitatively tested, is that it is the LFC phase that is the main source of decodable information. To test this issue, we analyzed human ECoG recorded during a game-like, one-dimensional, continuous motor task with a novel decoding method suitable for unfolding magnitude and phase explicitly into a complex-valued, time-frequency signal representation, enabling quantification of the decodable information within the temporal, spatial and frequency domains and allowing disambiguation of the phase contribution from that of the spectral magnitude. The decoding accuracy based only on phase information was substantially (at least 2 fold) and significantly higher than that based only on magnitudes for position, velocity and acceleration. The frequency profile of movement-related information in the ECoG data matched well with the frequency profile expected when assuming a close time-domain correlate of movement velocity in the ECoG, e.g., a (noisy) "copy" of hand velocity. No such match was observed with the frequency profiles expected when assuming a copy of either hand position or acceleration. There was also no indication of additional magnitude-based mechanisms encoding movement information in the LFC range. Thus, our study contributes to elucidating the nature of the informative LFC of motor cortical population activity and may hence contribute to improve decoding strategies and BMI performance
No image available
Abstract: Predicting future brain signal is highly sought-after, yet difficult to achieve. To predict the future phase of cortical activity at localized ECoG and MEG recording sites, we exploit its predominant, large-scale, spatiotemporal dynamics. The dynamics are extracted from the brain signal through Fourier analysis and principal components analysis (PCA) only, and cast in a data model that predicts future signal at each site and frequency of interest. The dominant eigenvectors of the PCA that map the large-scale patterns of past cortical phase to future ones take the form of smoothly propagating waves over the entire measurement array. In ECoG data from 3 subjects and MEG data from 20 subjects collected during a self-initiated motor task, mean phase prediction errors were as low as 0.5 radians at local sites, surpassing state-of-the-art methods of within-time-series or event-related models. Prediction accuracy was highest in delta to beta bands, depending on the subject, was more accurate during episodes of high global power, but was not strongly dependent on the time-course of the task. Prediction results did not require past data from the to-be-predicted site. Rather, best accuracy depended on the availability in the model of long wavelength information. The utility of large-scale, low spatial frequency traveling waves in predicting future phase activity at local sites allows estimation of the error introduced by failing to account for irreducible trajectories in the activity dynamics
No image available
No image available
No image available
No image available
· 2023
Abstract: Automated clinical EEG analysis using machine learning (ML) methods is a growing EEG research area. Previous studies on binary EEG pathology decoding have mainly used the Temple University Hospital (TUH) Abnormal EEG Corpus (TUAB) which contains approximately 3,000 manually labelled EEG recordings. To evaluate and eventually even improve the generalisation performance of machine learning methods for EEG pathology, decoding larger, publicly available datasets is required. A number of studies addressed the automatic labelling of large open-source datasets as an approach to create new datasets for EEG pathology decoding, but little is known about the extent to which training on larger, automatically labelled dataset affects decoding performances of established deep neural networks. In this study, we automatically created additional pathology labels for the Temple University Hospital (TUH) EEG Corpus (TUEG) based on the medical reports using a rule-based text classifier. We generated a dataset of 15,300 newly labelled recordings, which we call the TUH Abnormal Expansion EEG Corpus (TUABEX), and which is five times larger than the TUAB. Since the TUABEX contains more pathological (75%) than non-pathological (25%) recordings, we then selected a balanced subset of 8,879 recordings, the TUH Abnormal Expansion Balanced EEG Corpus (TUABEXB). To investigate how training on a larger, automatically labelled dataset affects the decoding performance of deep neural networks, we applied four established deep convolutional neural networks (ConvNets) to the task of pathological versus non-pathological classification and compared the performance of each architecture after training on different datasets. The results show that training on the automatically labelled TUABEXB dataset rather than training on the manually labelled TUAB dataset increases accuracies on TUABEXB and even for TUAB itself for some architectures. We argue that automatically labelling of large open-source datasets can be used to efficiently utilise the massive amount of EEG data stored in clinical archives. We make the proposed TUABEXB available open source and thus offer a new dataset for EEG machine learning research
No image available
No image available