The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates.
This text presents a comprehensive mathematical theory for elliptic, parabolic, and hyperbolic differential equations. It compares finite element and finite difference methods and illustrates applications of generalized difference methods to elastic bodies, electromagnetic fields, underground water pollution, and coupled sound-heat flows.
This book offers an elementary and self-contained introduction to many fundamental issues concerning approximate solutions of operator equations formulated in an abstract Banach space setting, including important topics such as solvability, computational schemes, convergence, stability and error estimates. The operator equations under investigation include various linear and nonlinear types of ordinary and partial differential equations, integral equations, and abstract evolution equations, which are frequently involved in applied mathematics and engineering applications.Each chapter contains well-selected examples and exercises, for the purposes of demonstrating the fundamental theories and methods developed in the text and familiarizing the reader with functional analysis techniques useful for numerical solutions of various operator equations.
No image available
No image available
No image available
No image available
No image available
· 1990
No image available
No image available