This book provides comprehensive coverage of fundamentals of database management system. It contains a detailed description on Relational Database Management System Concepts. There are a variety of solved examples and review questions with solutions. This book is for those who require a better understanding of relational data modeling, its purpose, its nature, and the standards used in creating relational data model.
· 2014
Ambient Diagnostics addresses innovative methods for discovering patterns from affordable devices, such as mobile phones, watches, cameras, and game interfaces, to interpret multimedia data for personal health monitoring and diagnosis. This is the first comprehensive textbook on multidisciplinary innovations in affordable healthcare—from sensory fusion, pattern detection, to classification. Connecting the Dots The material in this book combines sensing, pattern recognition, and visual design, and is divided into four parts, which cover fundamentals, multimedia intelligence, pervasive sensors, and crowdsourcing. The author describes basic pattern discovery models, sound, color, motion and video analytics, and pattern discovery from games and social networks. Each chapter contains the material’s main concepts, as well as case studies, and extensive study questions. Contains overviews about diagnostic sensors on mobile phones Reflects the rapidly growing platforms for remote sensing, gaming, and social networking Incorporates cognitive tests such as fatigue detection Includes pseudo code and sample code Provides vision algorithms and multimedia analytics Covers Multimedia Intelligence Extensively Ambient Diagnostics includes concepts for ambient technologies such as point-and-search, the pill camera, active sensing with Kinect, digital human labs, negative and relative feature spaces, and semantic representations. The book also introduces methods for collective intelligence from online video games and social media.
· 2012
An up-to-date, self-contained introduction to a state-of-the-art machine learning approach, Ensemble Methods: Foundations and Algorithms shows how these accurate methods are used in real-world tasks. It gives you the necessary groundwork to carry out further research in this evolving field. After presenting background and terminology, the book covers the main algorithms and theories, including Boosting, Bagging, Random Forest, averaging and voting schemes, the Stacking method, mixture of experts, and diversity measures. It also discusses multiclass extension, noise tolerance, error-ambiguity and bias-variance decompositions, and recent progress in information theoretic diversity. Moving on to more advanced topics, the author explains how to achieve better performance through ensemble pruning and how to generate better clustering results by combining multiple clusterings. In addition, he describes developments of ensemble methods in semi-supervised learning, active learning, cost-sensitive learning, class-imbalance learning, and comprehensibility enhancement.
· 2011
Increasingly, crimes and fraud are digital in nature, occurring at breakneck speed and encompassing large volumes of data. To combat this unlawful activity, knowledge about the use of machine learning technology and software is critical. Machine Learning Forensics for Law Enforcement, Security, and Intelligence integrates an assortment of deductive and instructive tools, techniques, and technologies to arm professionals with the tools they need to be prepared and stay ahead of the game. Step-by-step instructions The book is a practical guide on how to conduct forensic investigations using self-organizing clustering map (SOM) neural networks, text extraction, and rule generating software to "interrogate the evidence." This powerful data is indispensable for fraud detection, cybersecurity, competitive counterintelligence, and corporate and litigation investigations. The book also provides step-by-step instructions on how to construct adaptive criminal and fraud detection systems for organizations. Prediction is the key Internet activity, email, and wireless communications can be captured, modeled, and deployed in order to anticipate potential cyber attacks and other types of crimes. The successful prediction of human reactions and server actions by quantifying their behaviors is invaluable for pre-empting criminal activity. This volume assists chief information officers, law enforcement personnel, legal and IT professionals, investigators, and competitive intelligence analysts in the strategic planning needed to recognize the patterns of criminal activities in order to predict when and where crimes and intrusions are likely to take place.
This second edition of a bestseller provides a practical, user-friendly manual guiding the theory and practice of cardiac electrophysiolology. The handbook provides the specialist in training with a thorough grounding procedures, and clinical findings for clinicians. It provides a review of the main kinds of arrhythmia with illustrations of typical ECG findings supported where appropriate by correlative imaging. It also details the principal diagnostic and therapeutic procedures include implantation of pacemakers, resynchronization therapy, and ablation techniques.
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
Although many Bayesian Network (BN) applications are now in everyday use, BNs have not yet achieved mainstream penetration. Focusing on practical real-world problem solving and model building, as opposed to algorithms and theory, Risk Assessment and Decision Analysis with Bayesian Networks explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide powerful insights and better decision making. Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, and more Introduces all necessary mathematics, probability, and statistics as needed The book first establishes the basics of probability, risk, and building and using BN models, then goes into the detailed applications. The underlying BN algorithms appear in appendices rather than the main text since there is no need to understand them to build and use BN models. Keeping the body of the text free of intimidating mathematics, the book provides pragmatic advice about model building to ensure models are built efficiently. A dedicated website, www.BayesianRisk.com, contains executable versions of all of the models described, exercises and worked solutions for all chapters, PowerPoint slides, numerous other resources, and a free downloadable copy of the AgenaRisk software.
· 2003
&a>Database Design for Mere Mortals™, Second Edition, is a straightforward, platform-independent tutorial on the basic principles of relational database design. It provides a commonsense design methodology for developing databases that work. Database design expert Michael J. Hernandez has expanded his best-selling first edition, maintaining its hands-on approach and accessibility while updating its coverage and including even more examples and illustrations. This book will give you the knowledge and tools you need to create efficient and effective relational databases.
A guide to the usefulness of data science covers such topics as algorithms, logistic regression, financial modeling, data visualization, and data engineering.
· 2020
Everywhere you look people are talking about data. Buzzwords abound – ‘data science’, ‘machine learning’, ‘artificial intelligence’. But what does any of it really mean, and most importantly what does it mean for your business? Long-established businesses in many industries find themselves competing with new entrants built entirely on data and analytics. This ground-breaking new book levels the playing field in dramatic fashion. The Average is Always Wrong is a completely pragmatic and hands-on guide to harnessing data to transform your business for the better. Experienced CEO and CMO Ian Shepherd takes you behind the jargon and puts together a powerful change programme anyone can enact in their business right now, to reap the rewards of simple but sophisticated uses of data. Filled with practical examples and case studies, readers will come away with a powerful understanding of the real value of data and the analytical techniques that can drive profit growth.