No image available
· 2023
Abstract: Identification of patients with idiopathic normal pressure hydrocephalus (iNPH) in a collective with suspected neurodegenerative disease is essential. This study aimed to determine the metabolic spatial covariance pattern of iNPH on FDG PET using an established technique based on scaled subprofile model principal components analysis (SSM-PCA). We identified 11 patients with definite iNPH. By applying SSM-PCA to the FDG PET data, they were compared to 48 age-matched healthy controls to determine the whole-brain voxel-wise metabolic spatial covariance pattern of definite iNPH (iNPH-related pattern, iNPHRP). The iNPHRP score was compared between groups of patients with definite iNPH, possible iNPH (N = 34), Alzheimer's (AD, N = 38), and Parkinson's disease (PD, N = 35) applying pairwise Mann-Whitney U tests and correction for multiple comparisons. SSM-PCA of FDG PET revealed an iNPHRP that is characterized by relative negative voxel weights at the vicinity of the lateral ventricles and relative positive weights in the paracentral midline region. The iNPHRP scores of patients with definite iNPH were substantially higher than in patients with AD and PD (both p 0.05) and non-significantly higher than those of patients with possible iNPH. Subject scores of the iNPHRP discriminated definite iNPH from AD and PD with 96% and 100% accuracy and possible iNPH from AD and PD with 83% and 86% accuracy.br
No image available
No image available
No image available
No image available
· 2017
Abstract: Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training program on these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Results: With balance training, the elderly subjects significantly reduced their overly large postural reactions and approximated those of younger subjects. Less significant differences between elderly and young subjects' postural control, namely larger spontaneous sway amplitudes, velocities, and frequencies, larger overall time delays and a weaker motor feedback compared to young subjects were not significantly affected by the balance training. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits
· 2024
"Football EM 2024 for True Fans" - The Ultimate Companion through the Tournament! Fun and activity for kids and adults! Immerse yourself in the fascinating world of European football with our exclusive companion book of over 88 pages for the Football European Championship 2024 in Germany. Here you will learn everything a true fan needs to know, from the stadiums to the participating teams to the historic moments of past European Championships.
No image available
No image available
No image available
· 2020
Abstract: Background Postural instability presents a common and disabling consequence of chemotherapy-induced peripheral neuropathy (CIPN). However, knowledge about postural behavior of CIPN patients is sparse. With this pilot study, we used a new approach to i) characterize postural impairments as compared to healthy subjects, ii) allocate possible abnormalities to a set of parameters describing sensorimotor function, and iii) evaluate the effects of a balance-based exercise intervention. Methods We analyzed spontaneous and externally perturbed postural control in eight CIPN patients before and after a balance-based exercise intervention by using a modification of an established postural control model. These findings were compared to 15 matched healthy subjects. Results Spontaneous sway amplitude and velocity were larger in CIPN patients compared to healthy subjects. CIPN patients' reactions to external perturbations were smaller compared to healthy subjects, indicating that patients favor vestibular over proprioceptive sensory information. The balance-based exercise intervention up-weighted proprioceptive information in patients. Conclusions CIPN patients' major postural deficit may relate to underuse of proprioceptive information that results in a less accurate posture control as spontaneous sway results indicate. The balance-based exercise intervention is able to partially correct for this abnormality. Our study contributes to a better understanding of postural impairments in CIPN patients and suggests an effective treatment strategy