No image available
· 2024
Ein Nachschlagewerk, das die Dermatologie umfassend behandelt und dabei übersichtlich bleibt? Referenz Dermatologie beweist, dass dies möglich ist: Gut verständlich und klar strukturiert liefern die Autor*innen verlässliche Antworten zu den wichtigsten dermatologischen und allergologischen Krankheitsbildern. Die Angaben sind sehr konkret gehalten, um Ihnen eine unmittelbare Unterstützung im Arbeitsalltag zu bieten.
No image available
· 2020
No image available
· 2023
Abstract: Background Histopathological differentiation of early mycosis fungoides (MF) from benign chronic inflammatory dermatoses remains difficult and often impossible, despite the inclusion of all available diagnostic parameters. Objective To identify the most impactful histological criteria for a predictive diagnostic model to discriminate MF from atopic dermatitis (AD). Methods In this multicentre study, two cohorts of patients with either unequivocal AD or MF were evaluated by two independent dermatopathologists. Based on 32 histological attributes, a hypothesis-free prediction model was developed and validated on an independent patient's cohort. Results A reduced set of two histological features (presence of atypical lymphocytes in either epidermis or dermis) was trained. In an independent validation cohort, this model showed high predictive power (95% sensitivity and 100% specificity) to differentiate MF from AD and robustness against inter-individual investigator differences. Limitations. The study investigated a limited number of cases and the classifier is based on subjectively evaluated histological criteria. Conclusion Aiming at distinguishing early MF from AD, the proposed binary classifier performed well in an independent cohort and across observers. Combining this histological classifier with immunohistochemical and/or molecular techniques (such as clonality analysis or molecular classifiers) could further promote differentiation of early MF and AD
No image available