No image available
No image available
· 2021
Abstract: The assessment of safety is an important aspect of the evaluation of new therapies in clinical trials, with analyses of adverse events being an essential part of this. Standard methods for the analysis of adverse events such as the incidence proportion, that is the number of patients with a specific adverse event out of all patients in the treatment groups, do not account for both varying follow-up times and competing risks. Alternative approaches such as the Aalen-Johansen estimator of the cumulative incidence function have been suggested. Theoretical arguments and numerical evaluations support the application of these more advanced methodology, but as yet there is to our knowledge only insufficient empirical evidence whether these methods would lead to different conclusions in safety evaluations. The Survival analysis for AdVerse events with VarYing follow-up times (SAVVY) project strives to close this gap in evidence by conducting a meta-analytical study to assess the impact of the methodology on the conclusion of the safety assessment empirically. Here we present the rationale and statistical concept of the empirical study conducted as part of the SAVVY project. The statistical methods are presented in unified notation, and examples of their implementation in R and SAS are provided
No image available
· 2019
Abstract: The analysis of adverse events (AEs) is a key component in the assessment of a drug's safety profile. Inappropriate analysis methods may result in misleading conclusions about a therapy's safety and consequently its benefit-risk ratio. The statistical analysis of AEs is complicated by the fact that the follow-up times can vary between the patients included in a clinical trial. This paper takes as its focus the analysis of AE data in the presence of varying follow-up times within the benefit assessment of therapeutic interventions. Instead of approaching this issue directly and solely from an analysis point of view, we first discuss what should be estimated in the context of safety data, leading to the concept of estimands. Although the current discussion on estimands is mainly related to efficacy evaluation, the concept is applicable to safety endpoints as well. Within the framework of estimands, we present statistical methods for analysing AEs with the focus being on the time to the occurrence of the first AE of a specific type. We give recommendations which estimators should be used for the estimands described. Furthermore, we state practical implications of the analysis of AEs in clinical trials and give an overview of examples across different indications. We also provide a review of current practices of health technology assessment (HTA) agencies with respect to the evaluation of safety data. Finally, we describe problems with meta-analyses of AE data and sketch possible solutions
No image available