My library button
  • No image available

  • No image available

  • Book cover of Insulinpumpen und Sensoren
  • No image available

    Abstract: Background Meningiomas are common brain tumours that are usually defined by benign clinical course. However, some meningiomas undergo a malignant transformation and recur within a short time period regardless of their World Health Organization (WHO) grade. The current study aimed to identify potential markers that can discriminate between benign and malignant meningioma courses. Methods We profiled the metabolites from 43 patients with low- and high-grade meningiomas. Tumour specimens were analyzed by nuclear magnetic resonance analysis; 270 metabolites were identified and clustered with the AutoPipe algorithm. Results We observed two distinct clusters marked by alterations in glycine/serine and choline/tryptophan metabolism. Glycine/serine cluster showed significantly lower WHO grades and proliferation rates. Also progression-free survival was significantly longer in the glycine/serine cluster. Conclusion Our findings suggest that alterations in glycine/serine metabolism are associated with lower proliferation and more recurrent tumours. Altered choline/tryptophan metabolism was associated with increases proliferation, and recurrence. Our results suggest that tumour malignancy can be reflected by metabolic alterations, which may support histological classifications to predict the clinical outcome of patients with meningiomas

  • No image available

    Abstract: ​Introduction Randomised controlled trials (RCTs) have shown a positive effect of early integration of palliative care (EIPC) in various advanced cancer entities regarding patients' quality of life (QoL), survival, mood, caregiver burden and reduction of aggressiveness of treatment near the end of life. However, RCTs investigating the positive effect of EIPC for patients suffering from glioblastoma multiforme (GBM) are lacking. After modelling work identifying the specific needs of GBM patients and their caregivers, the aim of this study is to investigate the impact of EIPC in this particular patient group. ​Methods and analysis The recruitment period of this multicenter RCT started in May 2019. GBM patients (n=214) and their caregivers will be randomly assigned to either the intervention group (receiving proactive EIPC on a monthly basis) or the control group (receiving treatment according to international standards and additional, regular assessment of QoL ('optimised' standard care)). The primary outcome is QoL assessed by subscales of the Functional Assessment of Cancer Therapy for brain tumour (FACT-Br) from baseline to 6 months of treatment. Secondary outcomes are changes in QoL after 12 (end of intervention), 18 and 24 months (end of follow-up), the full FACT-Br scale, patients' palliative care needs, depression/anxiety, cognitive impairment, caregiver burden, healthcare use, cost-effectiveness and overall survival. ​Ethics and dissemination The study will be conducted in accordance with the Declaration of Helsinki and has been approved by the local ethics committees of the University Clinics of Cologne, Aachen, Bonn, Freiburg and Munich (LMU). Results of the trial will be submitted for publication in a peer-reviewed, open access journal and disseminated through presentations at conferences. Trial registration number German Register for Clinical Studies (DRKS) (DRKS00016066); Pre-results

  • No image available

    Abstract: Background The revised 2016 WHO-Classification of CNS-tumours now integrates molecular information of glial brain tumours for accurate diagnosis as well as for the development of targeted therapies. In this prospective study, our aim is to investigate the predictive value of MR-spectroscopy in order to establish a solid preoperative molecular stratification algorithm of these tumours. We will process a 1H MR-spectroscopy sequence within a radiomics analytics pipeline. Methods Patients treated at our institution with WHO-Grade II, III and IV gliomas will receive preoperative anatomical (T2- and T1-weighted imaging with and without contrast enhancement) and proton MR spectroscopy (MRS) by using chemical shift imaging (MRS) (5 × 5 × 15 mm3 voxel size). Tumour regions will be segmented and co-registered to corresponding spectroscopic voxels. Raw signals will be processed by a deep-learning approach for identifying patterns in metabolic data that provides information with respect to the histological diagnosis as well patient characteristics obtained and genomic data such as target sequencing and transcriptional data. Discussion By imaging the metabolic profile of a glioma using a customized chemical shift 1H MR spectroscopy sequence and by processing the metabolic profiles with a machine learning tool we intend to non-invasively uncover the genetic signature of gliomas. This work-up will support surgical and oncological decisions to improve personalized tumour treatment. Trial registration This study was initially registered under another name and was later retrospectively registered under the current name at the German Clinical Trials Register (DRKS) under DRKS00019855

  • No image available

    Abstract: Purpose Multimodal therapies have significantly improved prognosis in glioma. However, in particular radiotherapy may induce long-term neurotoxicity compromising patients' neurocognition and quality of life. The present prospective multicenter study aimed to evaluate associations of multimodal treatment with neurocognition with a particular focus on hippocampal irradiation. Methods Seventy-one glioma patients (WHO grade 1-4) were serially evaluated with neurocognitive testing and quality of life questionnaires. Prior to (baseline) and following further treatment (median 7.1 years [range 4.6-11.0] after baseline) a standardized computerized neurocognitive test battery (NeuroCog FX) was applied to gauge psychomotor speed and inhibition, verbal short-term memory, working memory, verbal and non-verbal memory as well as verbal fluency. Mean ipsilateral hippocampal radiation dose was determined in a subgroup of 27 patients who received radiotherapy according to radiotherapy plans to evaluate its association with neurocognition. Results Between baseline and follow-up mean performance in none of the cognitive domains significantly declined in any treatment modality (radiotherapy, chemotherapy, combined radio-chemotherapy, watchful-waiting), except for selective attention in patients receiving chemotherapy alone. Apart from one subtest (inhibition), mean ipsilateral hippocampal radiation dose > 50 Gy (Dmean) as compared to 10 Gy showed no associations with long-term cognitive functioning. However, patients with Dmean 10 Gy showed stable or improved performance in all cognitive domains, while patients with 50 Gy numerically deteriorated in 4/8 domains.brbrConclusionsbrMultimodal glioma therapy seems to affect neurocognition less than generally assumed. Even patients with unilateral hippocampal irradiation with 50 Gy showed no profound cognitive decline in this series

  • No image available

    Abstract: Background Delayed cerebral ischemia increases mortality and morbidity after aneurysmal subarachnoid hemorrhage (aSAH). Various techniques are applied to detect cerebral vasospasm and hypoperfusion. Contrast-enhanced ultrasound perfusion imaging (UPI) is able to detect cerebral hypoperfusion in acute ischemic stroke. This prospective study aimed to evaluate the use of UPI to enable detection of cerebral hypoperfusion after aSAH. Methods We prospectively enrolled patients with aSAH and performed UPI examinations every second day after aneurysm closure. Perfusion of the basal ganglia was outlined to normalize the perfusion records of the anterior and posterior middle cerebral artery territory. We applied various models to characterize longitudinal perfusion alterations in patients with delayed ischemic neurologic deficit (DIND) across the cohort and predict DIND by using a multilayer classification model. Results Between August 2013 and December 2015, we included 30 patients into this prospective study. The left-right difference of time to peak (TTP) values showed a significant increase at day 10-12. Patients with DIND demonstrated a significant, 4.86 times increase of the left-right TTP ratio compared with a mean fold change in patients without DIND of 0.9 times (p = 0.032). Conclusions UPI is feasible to enable detection of cerebral tissue hypoperfusion after aSAH, and the left-right difference of TTP values is the most indicative result of this finding

  • No image available

  • No image available

    Abstract: Mutated isocitrate dehydrogenase 1 (IDH1) defines a molecularly distinct subtype of diffuse glioma1,2,3. The most common IDH1 mutation in gliomas affects codon 132 and encodes IDH1(R132H), which harbours a shared clonal neoepitope that is presented on major histocompatibility complex (MHC) class II4,5. An IDH1(R132H)-specific peptide vaccine (IDH1-vac) induces specific therapeutic T helper cell responses that are effective against IDH1(R132H)+ tumours in syngeneic MHC-humanized mice4,6,7,8. Here we describe a multicentre, single-arm, open-label, first-in-humans phase I trial that we carried out in 33 patients with newly diagnosed World Health Organization grade 3 and 4 IDH1(R132H)+ astrocytomas (Neurooncology Working Group of the German Cancer Society trial 16 (NOA16), ClinicalTrials.gov identifier NCT02454634). The trial met its primary safety endpoint, with vaccine-related adverse events restricted to grade 1. Vaccine-induced immune responses were observed in 93.3% of patients across multiple MHC alleles. Three-year progression-free and death-free rates were 0.63 and 0.84, respectively. Patients with immune responses showed a two-year progression-free rate of 0.82. Two patients without an immune response showed tumour progression within two years of first diagnosis. A mutation-specificity score that incorporates the duration and level of vaccine-induced IDH1(R132H)-specific T cell responses was associated with intratumoral presentation of the IDH1(R132H) neoantigen in pre-treatment tumour tissue. There was a high frequency of pseudoprogression, which indicates intratumoral inflammatory reactions. Pseudoprogression was associated with increased vaccine-induced peripheral T cell responses. Combined single-cell RNA and T cell receptor sequencing showed that tumour-infiltrating CD40LG+ and CXCL13+ T helper cell clusters in a patient with pseudoprogression were dominated by a single IDH1(R132H)-reactive T cell receptor