No image available
· 2023
Abstract: We present an effective, fast, and user-friendly method to reduce codigestion of bead-bound ligands, such as antibodies or streptavidin, in affinity purification-mass spectrometry experiments. A short preincubation of beads with Sulfo-NHS-Acetate leads to chemical acetylation of lysine residues, making ligands insusceptible to Lys-C-mediated proteolysis. In contrast to similar approaches, our procedure offers the advantage of exclusively using nontoxic chemicals and employing mild chemical reaction conditions. After binding of bait proteins to Sulfo-NHS-Acetate treated beads, we employ a two-step digestion protocol with the sequential use of Lys-C protease for on-bead digestion followed by in-solution digestion of the released proteins with trypsin. The implementation of this protocol results in a strong reduction of contaminating ligand peptides, which allows significantly higher amounts of sample to be subjected to LC-MS analysis, improving sensitivity and quantitative accuracy
No image available
· 2023
Abstract: Autophagy is a catabolic process during which cytosolic material is enwrapped in a newly formed double-membrane structure called the autophagosome, and subsequently targeted for degradation in the lytic compartment of the cell. The fusion of autophagosomes with the lytic compartment is a tightly regulated step and involves membrane-bound SNARE proteins. These play a crucial role as they promote lipid mixing and fusion of the opposing membranes. Among the SNARE proteins implicated in autophagy, the essential SNARE protein YKT6 is the only SNARE protein that is evolutionarily conserved from yeast to humans. Here, we show that alterations in YKT6 function, in both mammalian cells and nematodes, produce early and late autophagy defects that result in reduced survival. Moreover, mammalian autophagosomal YKT6 is phospho-regulated by the ULK1 kinase, preventing premature bundling with the lysosomal SNARE proteins and thereby inhibiting autophagosome-lysosome fusion. Together, our findings reveal that timely regulation of the YKT6 phosphorylation status is crucial throughout autophagy progression and cell survival