No image available
No author available
· 1993
No image available
No author available
· 1985
No image available
· 2006
The large scale application of non-evaporable getter coating in RHIC has been effective in reducing the electron cloud. Since beams with higher intensity and smaller bunch spacing became possible in operation, the emittance growth is of concern. Study results are reported together with experiences of machine improvements: saturated NEG coatings, anti-grazing ridges in warm sections, and the pre-pumping in cryogenic regions.
No image available
A high-energy electron cooling system is presently being developed to overcome emittance growth due to Intra-beam Scattering (IBS) in RHIC. A critical item for choosing appropriate parameters of the cooler is an accurate description of the IBS. The analytic models were verified vs dedicated IBS measurements. Analysis of the 2004 data with the Au ions showed very good agreement for the longitudinal growth rates but significant disagreement with exact IBS models for the transverse growth rates. Experimental measurements were improved for the 2005 run with the Cu ions. Here, we present comparison of the 2005 data with theoretical models.
No image available
No author available
· 1988
No image available
No author available
· 1991
No image available
No author available
· 1985
No image available
· 2003
Polarized proton beam has been accelerated and stored at 100 GeV in Relativistic Heavy Ion Collider (RHIC) to study spin effects in the hadronic reactions. The essential equipment includes four Siberian snakes and eight spin rotators in two RHIC rings, a partial snake in the AGS, fast relative polarimeters, and ac dipoles in the AGS and RHIC. This paper summarizes the performance of RHIC as a polarized proton collider and of AGS as the injector to RHIC.
No image available
No author available
· 1988
No image available
No author available
· 1991