No image available
· 2023
Abstract: High-throughput bacterial genomic sequencing and subsequent analyses can produce large volumes of high-quality data rapidly. Advances in sequencing technology, with commensurate developments in bioinformatics, have increased the speed and efficiency with which it is possible to apply genomics to outbreak analysis and broader public health surveillance. This approach has been focused on targeted pathogenic taxa, such as Mycobacteria, and diseases corresponding to different modes of transmission, including food-and-water-borne diseases (FWDs) and sexually transmitted infections (STIs). In addition, major healthcare-associated pathogens such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci and carbapenemase-producing Klebsiella pneumoniae are the focus of research projects and initiatives to understand transmission dynamics and temporal trends on both local and global scales. Here, we discuss current and future public health priorities relating to genome-based surveillance of major healthcare-associated pathogens. We highlight the specific challenges for the surveillance of healthcare-associated infections (HAIs), and how recent technical advances might be deployed most effectively to mitigate the increasing public health burden they cause
No image available
No image available
No image available
· 2023
Abstract: Background NDM-producing Acinetobacter baumannii (NDMAb) were reported sporadically worldwide but little is known about the transmission, epidemiology and clinical features of NDMAb-infected patients. The goals of this study were to characterize (1) the epidemiology and clinical features of NDMAb-infected patients; (2) the microbiological and molecular features of NDMAb isolates and (3) the transmission networks of NDMAb within healthcare facilities. Methods The study was conducted at the Tel-Aviv Sourasky, Rambam and Sha'are-Zedek Medical centers (TASMC, RMC and SZMC, respectively) in Israel. All cases detected between January 2018 and July 2019 were included. Phylogenetic analysis was based on core genome SNP distances. Clonal transmission was defined according to molecular (≤ 5 SNP) and epidemiological criteria (overlapping hospital stay). NDMAb cases were compared at a ratio of 1:2 with non-NDM carbapenem-resistant A. baumannii (CRAb) cases. Results The study included 54 NDMAb-positive out of 857 CRAb patients, including 6/179 (3.3%) in TASMC, 18/441 (4.0%) in SZMC and 30/237 (12.6%) in RMC. Patients infected by NDMAb had similar clinical features and risk factors as patients with non-NDM CRAb. The length-of-stay was higher in NDMAb cases (48.5 days vs. 36 days, respectively, p = 0.097) and the in-hospital mortality was similarly high in both groups. Most isolates (41/54, 76%) were first detected from surveillance culture. The majority of isolates harbored the blaNDM−2 gene allele (n = 33), followed by the blaNDM−1 (n = 20) allele and the blaNDM−4 allele (n = 1). The majority of isolates were related within the ST level to other isolates in SZMC and RMC: 17/18 and 27/30 isolates, respectfully. The common ST's were the blaNDM−1 harboring ST-2 (n = 3) and ST-107 (n = 8) in SZMC and the blaNDM−2 harboring ST-103 in SZMC (n = 6) and in RMC (n = 27). All blaNDM alleles were located within a conserved mobile genetic environment flanked by the ISAb125 and IS91 family transposon. Clonal transmission was identified in most hospital-acquired cases in RMC and SZMC. Conclusion NDMAb constitutes a minor part of CRAb cases and are clinically similar to non-NDM CRAb. Transmission of NDMAb occurs mostly by clonal spread
No image available
· 2023
Abstract: Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a major clinical and public health threat. The rapid dissemination of this pathogen is driven by several successful clones worldwide. We aimed to investigate the CRKP clonal lineages, their antibiotic resistance determinants and their potential transmissions in a tertiary care hospital located in Athens, Greece. Between 2003 and 2018, 392 CRKP isolates from bloodstream infections were recovered from hospitalized patients. Whole genome sequencing (WGS) was performed on the Illumina platform to characterize 209 of these isolates. In total, 74 % (n=155) of 209 isolates belonged to three major clonal lineages: ST258 (n=108), ST147 (n=29) and ST11 (n=18). Acquired carbapenemase genes were the mechanisms of resistance in 205 isolates (blaKPC, n=123; blaVIM, n=56; blaNDM, n=20; blaOXA-48, n=6). Strong associations (P=0.0004) were observed between carbapenemase genes and clonal lineages. We first isolated blaVIM-1-carrying ST147 strains during the early sampling period in 2003, followed by the emergence of blaKPC-2-carrying ST258 in 2006 and blaNDM-1-carrying ST11 in 2013. Analysis of genetic distances between the isolates revealed six potential transmission events. When contextualizing the current collection with published data, ST147 reflected the global diversity, ST258 clustered with isolates representing the first introduction into Europe and ST11 formed a distinct geographically restricted lineage indicative of local spread. This study demonstrates the changing profile of bloodstream CRKP in a tertiary care hospital over a 15 year period and underlines the need for continued genomic surveys to develop strategies to contain further dissemination. This article contains data hosted by Microreact
No image available
· 2023
Abstract: Monoclonal antibodies (mAbs) directed against the spike of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective therapeutic options to combat infections in high-risk patients. Here, we report the adaptation of SARS-CoV-2 to the mAb cocktail REGN-COV in a kidney transplant patient with hypogammaglobulinemia. Following mAb treatment, the patient did not clear the infection. During viral persistence, SARS-CoV-2 acquired three novel spike mutations. Neutralization and mouse protection analyses demonstrate a complete viral escape from REGN-COV at the expense of ACE-2 binding. Final clearance of the virus occurred upon reduction of the immunosuppressive regimen and total IgG substitution. Serology suggests that the development of highly neutralizing IgM rather than IgG substitution aids clearance. Our findings emphasise that selection pressure by mAbs on SARS-CoV-2 can lead to development of escape variants in immunocompromised patients. Thus, modification of immunosuppressive therapy, if possible, might be preferable to control and clearance of the viral infection
No image available
No image available
No image available
No image available