No image available
· 2022
Abstract: Background Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) insufficiency and lipopolysaccharide-responsive and beige-like anchor protein (LRBA) deficiency are both complex immune dysregulation syndromes with an underlying regulatory T cell dysfunction due to the lack of CTLA-4 protein. As anticipated, the clinical phenotypes of CTLA-4 insufficiency and LRBA deficiency are similar. Main manifestations include hypogammaglobulinemia, lymphoproliferation, autoimmune cytopenia, immune-mediated respiratory, gastrointestinal, neurological, and skin involvement, which can be severe and disabling. The rationale of this clinical trial is to improve clinical outcomes of affected patients by substituting the deficient CTLA-4 by administration of CTLA4-Ig (abatacept) as a causative personalized treatment. Objectives Our objective is to assess the safety and efficacy of abatacept for patients with CTLA-4 insufficiency or LRBA deficiency. The study will also investigate how treatment with abatacept affects the patients' quality of life. Methods /Design: ABACHAI is a phase IIa prospective, non-randomized, open-label, single arm multi-center trial. Altogether 20 adult patients will be treated with abatacept 125 mg s.c. on a weekly basis for 12 months, including (1) patients already pretreated with abatacept, and (2) patients not pretreated, starting with abatacept therapy at the baseline study visit. For the evaluation of drug safety infection control during the trial, for efficacy, the CHAI-Morbidity Score will be used. Trial registration The trial is registered in the German Clinical Trials Register (Deutsches Register Klinischer Studien, DRKS) with the identity number DRKS00017736, registered: 6 July 2020, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00017736
No image available
· 2023
Abstract: Variants of uncertain significance (VUS) in CTLA4 are frequently identified in patients with antibody deficiency or immune dysregulation syndromes including, but not limited to, patients with multi-organ autoimmunity and autoinflammation. However, to ascertain the diagnosis of CTLA4 insufficiency, the functional relevance of each variant needs to be determined. Currently, various assays have been proposed to assess the functionality of CTLA4 VUS, including the analysis of transendocytosis, the biological function of CTLA4 to capture CD80 molecules from antigen presenting cells. Challenges of this assay include weak fluorescence intensity of the internalized ligand, poor reproducibility, and poor performance upon analyzing thawed cells. In addition, the distinction of pathogenic from non-pathogenic variants and from wild-type CTLA4, and the classification of the different VUS according to its level of CTLA4 dysfunction, would be desirable. We developed a novel CD80-expressing cell line for the evaluation of CD80-transendocytosis and compared it to the published transendocytosis assay. Our approach showed lower inter-assay variability and better robustness regardless the type of starting material (fresh or thawed peripheral mononuclear cells). In addition, receiver operating characteristic analysis showed 100% specificity, avoiding false positive results and allowing for a clear distinction between pathogenic and non-pathogenic variants in CTLA4-variant carriers. With our transendocytosis assay, we assessed the pathogenicity of 24 distinct CTLA4 variants from patients submitted to our diagnostic unit. Significantly impaired transendocytosis was demonstrated for 17 CTLA4 variants, whereas seven variants tested normal. In conclusion, our upgraded transendocytosis assay allows a reliable assessment of newly identified variants in CTLA4
No image available
No image available
No image available