My library button
  • Book cover of Our Planet
    Jill Jäger

     · 2009

    For more than thirty years, scientists from various disciplines have warned that the constant increase in world population and exponential world economic growth are seriously threatening our ecosystems. The vision on which this book is based is of an ongoing, adaptable societal process which leads the world down the path towards sustainability. In this vision, the speed of global environmental changes will be drastically reduced without forgoing the good life; at the same time prosperity will be distributed more fairly.

  • No image available

  • No image available

  • No image available

    The relationship between economic affluence, quality of life and environmental implications of production and consumption activities is a recurring issue in sustainability discussions. A number of studies examined selected relationships, but the general implications for future development directions of countries at different development stages are hardly addressed. In this paper, we use a global dataset with 173 countries to assess the overall relationship between resource footprints, quality of life and economic development over the period of 1990-2015. We select the Material Footprint and Carbon Footprint and contrast them with the Human Development Index, the Happiness Index and GDP per capita. Regression analyses show that the relationship between various resource footprints and quality of life generally follows a logarithmic path of development, while resource footprints and GDP per capita are linearly connected. From the empirical results, we derive a generalised path of development and cluster countries along this path. Within this comprehensive framework, we discuss options to change the path to respect planetary and social boundaries through a combination of resource efficiency increases, substitution of industries and sufficiency of consumption. We conclude that decoupling and green growth will not realise sustainable development, if planetary boundaries have already been transgressed.

  • No image available

    Most countries show a relative decoupling of economic growth from domestic resource use, implying increased resource efficiency. However, international trade facilitates the exchange of products between regions with disparate resource productivity. Hence, for an understanding of resource efficiency from a consumption perspective that takes into account the impacts in the upstream supply chains, there is a need to assess the environmental pressures embodied in trade. We use EXIOBASE3, a new multiregional input-output database, to examine the rate of increase in resource efficiency, and investigate the ways in which international trade contributes to the displacement of pressures on the environment from the consumption of a population. We look at the environmental pressures of energy use, greenhouse gas (GHG) emissions, material use, water use, and land use. Material use stands out as the only indicator growing in both absolute and relative terms to population and gross domestic product (GDP), while land use is the only indicator showing absolute decoupling from both references. Energy, GHG, and water use show relative decoupling. As a percentage of total global environmental pressure, we calculate the net impact displaced through trade rising from 23% to 32% for material use (1995-2011), 23% to 26% for water use, 20% to 29% for energy use, 20% to 26% for land use, and 19% to 24% for GHG emissions. The results show a substantial disparity between trade-related impacts for Organization for Economic Cooperation and Development (OECD) and non-OECD countries. At the product group level, we observe the most rapid growth in environmental footprints in clothing and footwear. The analysis points to implications for future policies aiming to achieve environmental targets, while fully considering potential displacement effects through international trade.

  • No image available

    Global multiregional input-output databases (GMRIOs) became the standard tool for tracking environmental impacts through global supply chains. To date, several GMRIOs are available, but the numerical results differ. This paper considers how GMRIOs can be made more robust and authoritative. We show that GMRIOs need detail in environmentally relevant sectors. On the basis of a review of earlier work, we conclude that the highest uncertainty in footprint analyses is caused by the environmental data used in a GMRIO, followed by the size of country measured in gross domestic product (GDP) as fraction of the global total, the structure of the national table, and only at the end the structure of trade. We suggest the following to enhance robustness of results. In the short term, we recommend using the Single country National Accounts Consistent footprint approach, that uses official data for extensions and the national table for the country in question, combined with embodiments in imports calculated using a GMRIO. In a time period of 2 to 3 years, we propose work on harmonized environmental data for water, carbon, materials, and land, and use the aggregated Organization for Economic Cooperation and Development (OECD) Inter-Country Input-Output GMRIO as default in combination with detailing procedures developed in, for example, the EXIOBASE and Eora projects. In the long term, solutions should be coordinated by the international organizations such as the United Nations (UN) Statistical Division, OECD, and Eurostat. This could ensure that when input-output tables and trade data of individual countries are combined, that the global totals are consistent and that bilateral trade asymmetries are resolved.

  • No image available

    In this article we compare the resource flows of Chile, Ecuador, Mexico, and Peru between 1980 and 2000. Our objective is to analyze the structure of social metabolism of extractive countries and the consequences of the neoliberal economic structural reforms on the use of natural resources. In two decades, the domestic extraction of materials increased considerably in the four countries, mainly due to the mining sector in Chile and Peru, biomass and oil in Ecuador, and construction minerals in Mexico. Imports and exports also increased, because of the increasingly deeper integration in international markets, prompted by liberalization policies implemented in the four countries between the late 1970s and the late 1990s. All four countries had a negative physical trade balance for most of the period analyzed, with exports exceeding imports in terms of weight. However, parallel growth of imports reduced the physical deficit in Chile, Mexico, and Peru. Ecuador's physical deficit was the highest and did not decrease during the last two decades. A diversification of exports away from bulk commodities could be observed in Chile and Mexico and to a lesser extent in Peru, whereas in Ecuador the export sector remained mainly based on oil and biomass. More research is needed to explore the environmental and social impacts of the neoliberal economic reforms. Also, the indirect flows associated with direct physical imports and exports deserve to be subjected to further analysis.

  • No image available

    The international industrial ecology (IE) research community and United Nations (UN) Environment have, for the first time, agreed on an authoritative and comprehensive data set for global material extraction and trade covering 40 years of global economic activity and natural resource use. This new data set is becoming the standard information source for decision making at the UN in the context of the post-2015 development agenda, which acknowledges the strong links between sustainable natural resource management, economic prosperity, and human well-being. Only if economic growth and human development can become substantially decoupled from accelerating material use, waste, and emissions can the tensions inherent in the Sustainable Development Goals be resolved and inclusive human development be achieved. In this paper, we summarize the key findings of the assessment study to make the IE research community aware of this new global research resource. The global results show a massive increase in materials extraction from 22 billion tonnes (Bt) in 1970 to 70 Bt in 2010, and an acceleration in material extraction since 2000. This acceleration has occurred at a time when global population growth has slowed and global economic growth has stalled. The global surge in material extraction has been driven by growing wealth and consumption and accelerating trade. A material footprint perspective shows that demand for materials has grown even in the wealthiest parts of the world. Low-income countries have benefited least from growing global resource availability and have continued to deliver primary materials to high-income countries while experiencing few improvements in their domestic material living standards. Material efficiency, the amount of primary materials required per unit of economic activity, has declined since around 2000 because of a shift of global production from very material-efficient economies to less-efficient ones. This global trend of recoupling economic activity with material use, driven by industrialization and urbanization in the global South, most notably Asia, has negative impacts on a suite of environmental and social issues, including natural resource depletion, climate change, loss of biodiversity, and uneven economic development. This research is a good example of the IE research community providing information for evidence-based policy making on the global stage and testament to the growing importance of IE research in achieving global sustainable development.

  • No image available

    Material flow-based indicators play an important role in measuring green and resource-efficient growth. This article examines the global flows of materials and the amounts of materials directly and indirectly necessary to satisfy domestic final demand in different countries world-wide. We calculate the indicator Raw Material Consumption (RMC), also referred to as material footprint (MF), by applying a global, multiregional input-output model based on the Global Trade Analysis Project (GTAP) database and extended by material extraction data. We examine world-wide patterns of material extraction and materials embodied in trade and consumption, investigating changes between 1997 and 2007. We find that flows of materials related to international trade have increased by almost 60% between 1997 and 2007. We show that the differences in MFs per capita are huge, ranging from up to 100 tonnes in the rich, oil-exporting countries to values as low as 1.5 to 2.0 tonnes in some developing countries. We also quantify the differences between the indicators Domestic Material Consumption (DMC) and RMC, illustrating that net material exporters generally have a DMC larger than RMC, whereas the reverse is observed for net importers. Finally, we confirm the fact that most countries with stable or declining DMCs actually show increasing RMCs, indicating the occurrence of leakage effects, which are not fully captured by DMC. This challenges the world-wide use of DMC as a headline indicator for national material consumption and calls for the consideration of upstream material requirements of international trade flows.

  • No image available

    Environmentally extended multiregional input-output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental-Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3--a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply-use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.