My library button

No image available

Accelerator and Ion Beam Tradeoffs for Studies of Warm DenseMatter

by R. C. Davidson, A. Friedman, R. W. Lee, D. V. Rose, A. M. Sessler, R. J. Briggs, E. P. Lee, B. G. Logan, J. J. Barnard, S. S. Yu, C. L. Olson, D. R. Welch, M. Tabak, J. S. Wurtele, J. W. Staples, L. Grisham, D. A. Callahan, P. Santhanam ยท 2006

Book is in your Library

ISBN:  Unavailable

Category: Unavailable

Page count: Unavailable

One approach for heating a target to ''Warm Dense Matter'' conditions (similar, for example, to the interiors of giant planets or certain stages in inertial confinement fusion targets), is to use intense ion beams as the heating source (see refs.[6] and [7] and references therein for motivation and accelerator concepts). By consideration of ion beam phase-space constraints, both at the injector, and at the final focus, and consideration of simple equations of state and relations for ion stopping, approximate conditions at the target foil may be calculated. Thus, target temperature and pressure may be calculated as a function of ion mass, ion energy, pulse duration, velocity tilt, and other accelerator parameters. We connect some of these basic parameters to help search the extensive parameter space including ion mass, ion energy, total charge in beam pulse, beam emittance, target thickness and density.