No image available
No image available
In this paper we numerically study the effect of ion motion in an adiabatic focuser, motivated by a recent suggestion that ion motion in an adiabatic focuser might be significant and even preclude operation of the focuser as previously envisioned. It is shown that despite ion motion the adiabatic focuser should work as well as originally envisioned.
No image available
No image available
· 2006
One approach for heating a target to ''Warm Dense Matter'' conditions (similar, for example, to the interiors of giant planets or certain stages in inertial confinement fusion targets), is to use intense ion beams as the heating source (see refs.[6] and [7] and references therein for motivation and accelerator concepts). By consideration of ion beam phase-space constraints, both at the injector, and at the final focus, and consideration of simple equations of state and relations for ion stopping, approximate conditions at the target foil may be calculated. Thus, target temperature and pressure may be calculated as a function of ion mass, ion energy, pulse duration, velocity tilt, and other accelerator parameters. We connect some of these basic parameters to help search the extensive parameter space including ion mass, ion energy, total charge in beam pulse, beam emittance, target thickness and density.
No image available
Gantries in the proton/carbon cancer therapy machines represent the major cost and are of the largest size. This report explains a new way to the gantry design. The size and cost of the gantries are reduced and their use is simplified by using the fixed magnetic field. The ''new'' gantry is made of a very large momentum acceptance non-scaling Fixed Field Alternating Gradient (FFAG) quarter and half arc beam lines. The gantry is made of combined function magnets with a very strong focusing and small dispersion function. Additional magnets with a fast response are required to allow adjustments of the beam position for different energies at the beginning of the gantry. Additional strong focusing magnets following the gantry have also to be adjustable to provide required spot size and radial scanning above the patients. The fixed field combined function magnets could be made of small permanent magnets for the proton machine, or of the high temperature superconductors or superconductors for the carbon machine, reducing dramatically the size.