My library button
  • Book cover of The Emerald Planet

    Plants have profoundly moulded the Earth's climate and the evolutionary trajectory of life. Far from being 'silent witnesses to the passage of time', plants are dynamic components of our world, shaping the environment throughout history as much as that environment has shaped them. In The Emerald Planet, David Beerling puts plants centre stage, revealing the crucial role they have played in driving global changes in the environment, in recording hidden facets of Earth's history, and in helping us to predict its future. His account draws together evidence from fossil plants, from experiments with their living counterparts, and from computer models of the 'Earth System', to illuminate the history of our planet and its biodiversity. This new approach reveals how plummeting carbon dioxide levels removed a barrier to the evolution of the leaf; how plants played a starring role in pushing oxygen levels upwards, allowing spectacular giant insects to thrive in the Carboniferous; and it strengthens fascinating and contentious fossil evidence for an ancient hole in the ozone layer. Along the way, Beerling introduces a lively cast of pioneering scientists from Victorian times onwards whose discoveries provided the crucial background to these and the other puzzles. This understanding of our planet's past sheds a sobering light on our own climate-changing activities, and offers clues to what our climatic and ecological futures might look like. There could be no more important time to take a close look at plants, and to understand the history of the world through the stories they tell. Oxford Landmark Science books are 'must-read' classics of modern science writing which have crystallized big ideas, and shaped the way we think.

  • Book cover of Making Eden

    Over 7 billion people depend on plants for healthy, productive, secure lives, but few of us stop to consider the origin of the plant kingdom that turned the world green and made our lives possible. And as the human population continues to escalate, our survival depends on how we treat the plant kingdom and the soils that sustain it. Understanding the evolutionary history of our land floras, the story of how plant life emerged from water and conquered the continents to dominate the planet, is fundamental to our own existence. In Making Eden David Beerling reveals the hidden history of Earth's sun-shot greenery, and considers its future prospects as we farm the planet to feed the world. Describing the early plant pioneers and their close, symbiotic relationship with fungi, he examines the central role plants play in both ecosystems and the regulation of climate. As threats to plant biodiversity mount today, Beerling discusses the resultant implications for food security and climate change, and how these can be avoided. Drawing on the latest exciting scientific findings, including Beerling's own field work in the UK, North America, and New Zealand, and his experimental research programmes over the past decade, this is an exciting new take on how plants greened the continents.

  • Book cover of Vegetation and the Terrestrial Carbon Cycle

    An analysis of the Earth's vegetations and carbon cycle in the past and predictions for the future.

  • No image available

    Land-management options for greenhouse gas removal (GGR) include afforestation or reforestation (AR), wetland restoration, soil carbon sequestration (SCS), biochar, terrestrial enhanced weathering (TEW), and bioenergy with carbon capture and storage (BECCS). We assess the opportunities and risks associated with these options through the lens of their potential impacts on ecosystem services (Nature's Contributions to People; NCPs) and the United Nations Sustainable Development Goals (SDGs). We find that all land-based GGR options contribute positively to at least some NCPs and SDGs. Wetland restoration and SCS almost exclusively deliver positive impacts. A few GGR options, such as afforestation, BECCS, and biochar potentially impact negatively some NCPs and SDGs, particularly when implemented at scale, largely through competition for land. For those that present risks or are least understood, more research is required, and demonstration projects need to proceed with caution. For options that present low risks and provide cobenefits, implementation can proceed more rapidly following no-regrets principles.

  • No image available

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of 500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of 1000 GtC, sometimes associated with 2uC global warming, would spur "slow" feedbacks and eventual warming of 3-4uC with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.