No image available
· 2015
Achieving a truly sustainable energy transition requires progress across multiple dimensions beyond climate change mitigation goals. This article reviews and synthesizes results from disparate strands of literature on the coeffects of mitigation to inform climate policy choices at different governance levels. The literature documents many potential cobenefits of mitigation for nonclimate objectives, such as human health and energy security, but little is known about their overall welfare implications. Integrated model studies highlight that climate policies as part of well-designed policy packages reduce the overall cost of achieving multiple sustainability objectives. The incommensurability and uncertainties around the quantification of coeffects become, however, increasingly pervasive the more the perspective shifts from sectoral and local to economy wide and global, the more objectives are analyzed, and the more the results are expressed in economic rather than nonmonetary terms. Different strings of evidence highlight the role and importance of energy demand reductions for realizing synergies across multiple sustainability objectives.
No image available
In this article we apply geodemographic consumer segmentation data in an input-output framework to understand the direct and indirect carbon dioxide (CO) emissions associated with consumer behavior of different lifestyles in the United Kingdom. In a subsequent regression analysis, we utilize the lifestyle segments contained in the dataset to control for aspects of behavioral differences related to lifestyles in an analysis of the impact of various socioeconomic variables on CO emissions, such as individual aspirations and people's attitudes toward the environment, as well as the physical context in which people act. This approach enables us to (1) test for the significance of lifestyles in determining CO emissions, (2) quantify the importance of a variety of individual socioeconomic determinants, and (3) provide a visual representation of “where” the various factors exert the greatest impact, by exploiting the spatial information contained in the lifestyle data. Our results indicate the importance of consumer behavior and lifestyles in understanding CO emissions in the United Kingdom. Across lifestyle groups, CO emissions can vary by a factor of between 2 and 3. Our regression results provide support for the idea that sociodemographic variables are important in explaining emissions. For instance, controlling for lifestyles and other determinants, we find that emissions are increasing with income and decreasing with education. Using the spatial information, we illustrate how the lifestyle mix of households in the United Kingdom affects the geographic distribution of environmental impacts.
No image available
· 2019
Land-management options for greenhouse gas removal (GGR) include afforestation or reforestation (AR), wetland restoration, soil carbon sequestration (SCS), biochar, terrestrial enhanced weathering (TEW), and bioenergy with carbon capture and storage (BECCS). We assess the opportunities and risks associated with these options through the lens of their potential impacts on ecosystem services (Nature's Contributions to People; NCPs) and the United Nations Sustainable Development Goals (SDGs). We find that all land-based GGR options contribute positively to at least some NCPs and SDGs. Wetland restoration and SCS almost exclusively deliver positive impacts. A few GGR options, such as afforestation, BECCS, and biochar potentially impact negatively some NCPs and SDGs, particularly when implemented at scale, largely through competition for land. For those that present risks or are least understood, more research is required, and demonstration projects need to proceed with caution. For options that present low risks and provide cobenefits, implementation can proceed more rapidly following no-regrets principles.