No image available
· 2017
Abstract: Purpose Cardiovascular diseases remain the number one death cause worldwide. Preclinical 4D flow phase contrast magnetic resonance imaging can provide substantial insights in the analysis of aortic pathophysiologies in various animal models. These insights may allow a better understanding of pathophysiologies, therapy monitoring, and can possibly be translated to humans. This study provides a framework to acquire the velocity field within the aortic arch. It analyses important flow values at different locations within the aortic arch. Imaging parameters with high temporal and spatial resolution are provided, that still allow combining this time-consuming method with other necessary imaging-protocols. Methods A new setup was established where a prospectively gated 4D phase contrast sequence is combined with a highly sensitive cryogenic coil on a preclinical magnetic resonance scanner. The sequence was redesigned to maintain a close to steady state condition of the longitudinal magnetization and hence to overcome steady state artifacts. Imaging parameters were optimized to provide high spatial and temporal resolution. Pathline visualizations were generated from the acquired velocity data in order to display complex flow patterns. Results Our setup allows data acquisition with at least two times the rate than that of previous publications based on Cartesian encoding, at an improved image quality. The "steady state" sequence reduces observed artifacts and provides uniform image intensity over the heart cycle. This made possible quantification of blood speed and wall shear stress (WSS) within the aorta and its branches. The highest velocities were observed in the ascending aorta with 137.5 ± 8 cm/s. Peak velocity values in the Brachiocephalic trunk were 57 ± 12 cm/s. Quantification showed that the peak flow occurs around 20 ms post R-wave in the ascending aorta. The highest mean axial wall shear stress was observed in the analysis plane between the left common carotid artery (LCCA) and the left subclavian artery. A stable image quality allows visualizing complex flow patterns by means of streamlines and for the first time, to the best of our knowledge, pathline visualizations from 4D flow MRI in mice. Conclusion The described setup allows analyzing pathophysiologies in mouse models of cardiovascular diseases in the aorta and its branches with better image quality and higher spatial and temporal resolution than previous Cartesian publications. Pathlines provide an advanced analysis of complex flow patterns in the murine aorta. An imaging protocol is provided that offers the possibility to acquire the aortic arch at sufficiently high resolution in less than one hour. This allows the combination of the flow assessment with other multifunctional imaging protocols
No image available
· 2018
Abstract: Patients suffering from neuronal degenerative diseases are increasingly being equipped with neural implants to treat symptoms or restore functions and increase their quality of life. Magnetic resonance imaging (MRI) would be the modality of choice for the diagnosis and compulsory postoperative monitoring of such patients. However, interactions between the magnetic resonance (MR) environment and implants pose severe health risks to the patient. Nevertheless, neural implant recipients regularly undergo MRI examinations, and adverse events are rarely reported. However, this should not imply that the procedures are safe. More than 300 000 cochlear implant recipients are excluded from MRI, unless the indication outweighs the excruciating pain. For 75 000 deep brain stimulation (DBS) recipients quite the opposite holds true: MRI is considered an essential part of the implantation procedure and some medical centres deliberately exceed safety regulations, which they refer to as crucially impractical. Permanent MRI-related neurological dysfunctions in DBS recipients have occurred in the past when manufacturer recommendations were exceeded. Within the last few decades, extensive effort has been invested to identify, characterise and quantify the occurring interactions. Yet today we are still far from a satisfying solution concerning a safe and beneficial MR procedure for all implant recipients. To contribute, we intend to raise awareness of the growing concern, summon the community to stop absurdities and instead improve the situation for the increasing number of patients. Therefore, we review implant safety in the MRI literature from an engineering point of view, with a focus on cochlear and DBS implants as success stories of neural implants in clinical practice. We briefly explain fundamental phenomena which can lead to patient harm, and point out breakthroughs and errors made. Then, we end with conclusions and strategies to avoid future implants from being contraindicated in MR examinations. We believe that implant recipients should enter MRI, but before doing so, it should be made sure that the procedure is reasonable
No image available
No image available
No image available
· 2020
No image available
Abstract: Temporal diffusion spectroscopy (TDS) currently uses the oscillating gradient spin echo (OGSE) experiment to measure the spectral density of translational velocity autocorrelation at single frequencies. Due to timing restrictions imposed by the transverse relaxation, the frequency selectivity and the sampling density of OGSE are limited, especially at low frequencies. We propose to overcome this problem by adopting the principles of Fourier transform spectroscopy. The new method of Fourier transform TDS (FTDS) uses two broadband gradient waveforms with different relative delays to make the spin echo attenuation sensitive to a broad range of diffusion frequencies with different harmonic modulations and calculates the spectrum by discrete Fourier transform. The method was validated by a measurement of diffusion spectra in highly restrictive tissues of a celery stalk and provided results consistent with OGSE, however, on a denser frequency grid
No image available
· 2017
Abstract: Purpose Implementing new magnetic resonance experiments, or sequences, often involves extensive programming on vendor-specific platforms, which can be time consuming and costly. This situation is exacerbated when research sequences need to be implemented on several platforms simultaneously, for example, at different field strengths. This work presents an alternative programming environment that is hardware-independent, open-source, and promotes rapid sequence prototyping. Methods A novel file format is described to efficiently store the hardware events and timing information required for an MR pulse sequence. Platform-dependent interpreter modules convert the file to appropriate instructions to run the sequence on MR hardware. Sequences can be designed in high-level languages, such as MATLAB, or with a graphical interface. Spin physics simulation tools are incorporated into the framework, allowing for comparison between real and virtual experiments. Results Minimal effort is required to implement relatively advanced sequences using the tools provided. Sequences are executed on three different MR platforms, demonstrating the flexibility of the approach. Conclusion A high-level, flexible and hardware-independent approach to sequence programming is ideal for the rapid development of new sequences. The framework is currently not suitable for large patient studies or routine scanning although this would be possible with deeper integration into existing workflows. Magn Reson Med 77:1544-1552, 2017. © 2016 International Society for Magnetic Resonance in Medicine
No image available
No image available
· 2017
Abstract: High signal-to-noise ratio (SNR) of the NMR signal has always been a key target that drives massive research effort in many fields. Among several parameters, a high filling factor of the MR coil has proven to boost the SNR. In case of small-volume samples, a high filling factor and thus a high SNR can be achieved through miniaturizing the MR coil. However, under certain circumstances, this can be impractical. In this paper, we present an extensive theoretical and experimental investigation of the inductively coupled LC resonator and the magnetic Lenz lens as two candidate approaches that can enhance the SNR in such circumstances. The results demonstrate that the narrow-band LC resonator is superior in terms of SNR, while the non-tuned nature of the Lenz lens makes it preferable in broadband applications
No image available