No image available
· 2019
Abstract: Aim: To investigate the antimicrobial photodynamic therapy (aPDT) of visible light and water-filtered infrared A radiation in combination with indocyanine green (ICG) on planktonic oral microorganisms as well as on oral biofilm. Methods: The irradiation was conducted for 5 min in combination with ICG. Treatment with chlorhexidine served as a positive control. The number of colony forming units and bacterial vitality were quantified. Results: All tested bacterial strains and salivary bacteria were killed at a level of 3log10. The colony forming units of the initial mature oral biofilms were strongly reduced. The high bactericidal effect of aPDT was confirmed by live/dead staining. Conclusion: The aPDT using visible light and water-filtered infrared A radiation and ICG has the potential to treat periodontitis and peri-implantitis
No image available
Abstract: The aim of this study was to examine the effect of aPDT with visual light (VIS) + water-filtered infrared A (wIRA) as a light source, and tetrahydroporphyrin-tetratosylate (THPTS) as a photosensitizer on in situ initial and mature oral biofilms. The samples were incubated, ex situ, with THPTS for two minutes, followed by irradiation with 200 mW cm − 2 VIS + wIRA for five minutes at 37 °C. The adherent microorganisms were quantified, and the biofilm samples were visualized using live/dead staining and confocal laser scanning microscopy (CLSM). The THPTS-mediated aPDT resulted in significant decreases in both the initially adherent microorganisms and the microorganisms in the mature oral biofilms, in comparison to the untreated control samples (>99.99% each; p = 0.018 and p = 0.0066, respectively). The remaining vital bacteria significantly decreased in the aPDT-treated biofilms during initial adhesion (vitality rate 9.4% vs. 71.2% untreated control, 17.28% CHX). Of the mature biofilms, 25.67% remained vital after aPDT treatment (81.97% untreated control, 16.44% CHX). High permeability of THPTS into deep layers could be shown. The present results indicate that the microbial reduction in oral initial and mature oral biofilms resulting from aPDT with VIS + wIRA in combination with THPTS has significant potential for the treatment of oral biofilm-associated diseases
No image available
· 2020
Abstract: This study aimed to investigate the effects of an oral health optimized diet on the composition of the supragingival oral plaque in a randomized controlled trial. Participants of the standard diet group (n = 5) had a diet high in processed carbohydrates and did not change their dietary behavior during the observation. The healthy diet group (n = 9) had to change the diet after 2 weeks from a diet high in processed carbohydrates to a diet low in carbohydrates, rich in omega-3 fatty acids, rich in vitamins C and D, antioxidants and fiber for 4 weeks. Saliva and supragingival plaque samples were taken at the end of week two and eight of the observation period to investigate the composition of microbiota in saliva and supragingival plaque. Data were subjected to an exploratory analysis to identify significant differences. Statistically significant differences were only found in the healthy diet group between the baseline (week 2) and the final sample (week 8) for specific species in plaque and saliva samples. A reduction of the total counts of Streptococcus mitis group, Granulicatella adiacens, Actinomyces spp., and Fusobacterium spp. was found in plaque samples of the healthy diet group. In saliva samples of the healthy diet group, the total counts of Actinomyces spp. and Capnocytophaga spp. decreased. A diet low in carbohydrates, rich in omega-3 fatty acids, rich in vitamins C and D, and rich in fiber reduced Streptococcus mitis group, Granulicatella adiacens, Actinomyces spp., and Fusobacterium spp. in the supragingival plaque
No image available
No image available
Abstract: Oral diseases such as caries and periodontitis are mainly caused by microbial biofilms. Antibiotic therapy has reached its limits with regard to antimicrobial resistance, and new therapeutic measures utilizing natural phytochemicals are currently a focus of research. Hence, this systematic review provides a critical presentation of the antimicrobial effects of various medicinal herbs against in vitro ex vivo, and in situ formed multispecies oral biofilms. Searches were performed in three English databases (PubMed, EMBASE, CAMbase) and the electronic archives of five German journals from the times of their establishment until October 10th, 2014, with the search terms "(plant extracts OR herbal extracts OR plant OR herb) AND (oral biofilm OR dental biofilm OR dental plaque OR oral disease OR dental disease )." The pooled data were assessed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA). Initially, 1848 articles were identified, out of which 585 full-text articles were screened, 149 articles were reevaluated for eligibility and finally, 14 articles met all inclusion criteria. The data of 14 reports disclosed enhanced antiadhesive and antibiofilm activity by the plant extracts obtained from Vitis vinifera,Pinus spp.,Coffea canephora, Camellia sinensis ,Vaccinium macrocarpon, Galla chinensis, Caesalpinia ferrea Martius, Psidium cattleianum , representative Brazilian plants and manuka honey. Overall, a positive correlation was revealed between herb-based therapies and elimination rates of all types of multispecies oral biofilms. In that context, integrating or even replacing conventional dental therapy protocols with herbal-inspired treatments can allow effective antimicrobial control of oral biofilms and thus, dental diseases
No image available
· 2015
Abstract: Recently, growing attention has been paid to antimicrobial photodynamic therapy (aPDT) in dentistry. Changing the microbial composition of initial and mature oral biofilm by aPDT using visible light plus water-filtered infrared-A wavelengths (VIS + wIRA) has not yet been investigated. Moreover, most aPDT studies have been conducted on planktonic bacterial cultures. Therefore, in the present clinical study we cultivated initial and mature oral biofilms in six healthy volunteers for 2 hours or 3 days, respectively. The biofilms were treated with aPDT using VIS+wIRA (200 mW cm-2), toluidine blue (TB) and chlorine e6 (Ce6) for 5 minutes. Chlorhexidine treated biofilm samples served as positive controls, while untreated biofilms served as negative controls. After aPDT treatment the colony forming units (CFU) of the biofilm samples were quantified, and the surviving bacteria were isolated in pure cultures and identified using MALDI-TOF, biochemical tests and 16S rDNA-sequencing. aPDT killed more than 99.9% of the initial viable bacterial count and 95% of the mature oral biofilm in situ, independent of the photosensitizer. The number of surviving bacterial species was highly reduced to 6 (TB) and 4 (Ce6) in the treated initial oral biofilm compared to the 20 different species of the untreated biofilm. The proportions of surviving bacterial species were also changed after TB- and Ce6-mediated aPDT of the mature oral biofilm, resulting in a shift in the microbial composition of the treated biofilm compared to that of the control biofilm. In conclusion, aPDT using VIS + wIRA showed a remarkable potential to eradicate both initial and mature oral biofilms, and also to markedly alter the remaining biofilm. This encourages the clinical use of aPDT with VIS + wIRA for the treatment of periimplantitis and periodontitis
No image available
No image available
No image available
· 2022
Abstract: Background: The role of diet and nutrition in the prevention of oral diseases has recently gained increasing attention. Understanding the influence of diet on oral microbiota is essential for developing meaningful prevention approaches to oral diseases, and the identification of typical and atypical responders may contribute to this. Methods: We used data from an experimental clinical study in which 11 participants were exposed to different dietary regimens in five consecutive phases. To analyse the influence of additional nutritional components, we examined changes in bacterial concentrations measured by culture techniques compared to a run-in phase. A measure of correspondence between the mean and individual patterns of the bacterial composition is introduced. Results: The distance measures introduced showed clear differences between the subjects. In our data, two typical and three atypical responders appear to have been identified. Conclusions: The proposed method is suitable to identify typical and atypical responders, even in small datasets. We recommend routinely performing such analyses
No image available