No image available
· 2023
Abstract: Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths
No image available
· 2017
Attempts for in-vivo histology require a high spatial resolution that comes with the price of a decreased signal-to-noise ratio. We present a novel iterative and multi-scale smoothing method for quantitative Magnetic Resonance Imaging (MRI) data that yield proton density, apparent transverse and longitudinal relaxation, and magnetization transfer maps. The method is based on the propagation-separation approach. The adaptivity of the procedure avoids the inherent bias from blurring subtle features in the calculated maps that is common for non-adaptive smoothing approaches. The characteristics of the methods were evaluated on a high-resolution data set (500 mym isotropic) from a single subject and quantified on data from a multi-subject study. The results show that the adaptive method is able to increase the signal-to-noise ratio in the calculated quantitative maps while largely avoiding the bias that is otherwise introduced by spatially blurring values across tissue borders. As a consequence, it preserves the intensity contrast between white and gray matter and the thin cortical ribbon.
No image available
No image available