No image available
· 2021
Abstract: Circadian rhythm gene expression in cerebral pacemaker regions is regulated by a transcriptional-translational feedback loop across the 24-h day-night cycle. In preclinical models of subarachnoid hemorrhage (SAH), cyclic gene expression is disrupted. Stabilization of circadian rhythm gene expression attenuates susceptibility to ischemic damage in both neuronal and myocardial tissues. In this clinical observational study, circadian rhythm gene Period-2 (Per2) mRNA expression levels were determined from blood leukocytes and cerebrospinal fluid (CSF) cells via real-time PCR on days 1, 7 and 14 after aneurysm rupture in 49 patients with spontaneous SAH. CSF Per2 expression was markedly suppressed immediately after SAH and remained suppressed over the course of two weeks of ICU treatment. Short-term mortality as well as occurrence of delirium was associated with greater extent of Per2 suppression on day 1 after SAH. Patients that developed delayed cerebral ischemia exhibited comparatively lower Per2 expression levels on day 7 after SAH, while presence of vasospasm remained unaffected. However, Per2 expression did not differ in patient groups with favourable or non-favourable functional neurological outcome (modified Rankin Scales 1-3 vs. 4-6). While our findings suggest a potential protective effect of stable circadian rhythm gene expression on the extent of ischemic damage, this effect was confined to the early disease course and was not reflected in patients' functional neurological outcome
No image available
Abstract: Microglial erythrophagocytosis is crucial in injury response to hemorrhagic stroke. We hypothesized that regulation of microglial erythrophagocytosis via HO-1/CO depends on a pathway involving reactive oxygen species (ROS) and CD36 surface-expression. The microglial BV-2 cell line and primary microglia (PMG) were incubated +/−blood and +/−CO-exposure. PMG isolated from tissue-specific HO-1-deficient (LyzM-Cre-Hmox1 fl/fl) and CD36 −/− mice or siRNA against AMPK (AMP-activated protein kinase) were used to test our hypothesis. In a murine subarachnoid hemorrhage (SAH) model, we compared neuronal injury in wild-type and CD36 −/− mice. Readouts included vasospasm, microglia activation, neuronal apoptosis, and spatial memory. We observed increased microglial HO-1-expression after blood-exposure. A burst in ROS-production was seen after CO-exposure, which led to increased amounts of phosphorylated AMPK with subsequently enhanced CD36 surface-expression. Naïve PMG from LyzM-Cre-Hmox1 fl/fl mice showed reduced ROS-production and CD36 surface-expression and failed to respond to CO with increased CD36 surface-expression. Lack of HO-1 and CD36 resulted in reduced erythrophagocytosis that could not be rescued with CO. Erythrophagocytosis was enhanced in BV-2 cells in the presence of exogenous CO, which was abolished in cells treated with siRNA to AMPK. CD36 −/− mice subjected to SAH showed enhanced neuronal cell death, which resulted in impaired spatial memory function. We demonstrate that microglial phagocytic function partly depends on a pathway involving HO-1 with changes in ROS-production, phosphorylated AMPK, and surface expression of CD36. CD36 was identified as a crucial component in blood clearance after hemorrhage that ultimately determines neuronal outcome. These results demand further investigations studying the potential neuroprotective properties of CO
No image available
No image available
No image available
No image available
No image available
No image available
Abstract: Background As the COVID-19 pandemic strains healthcare systems worldwide, finding predictive markers of severe courses remains urgent. Most research so far was limited to selective questions hindering general assumptions for short- and long-term outcome. Methods In this prospective single-center biomarker study, 47 blood- and 21 bronchoalveolar lavage (BAL) samples were collected from 47 COVID-19 intensive care unit (ICU) patients upon admission. Expression of inflammatory markers toll-like receptor 3 (TLR3), heme oxygenase-1 (HO-1), interleukin (IL)-6, IL-8, leukocyte counts, procalcitonin (PCT) and carboxyhemoglobin (CO-Hb) was compared to clinical course. Clinical assessment comprised acute local organ damage, acute systemic damage, mortality and outcome after 6 months. Results PCT correlated with acute systemic damage and was the best predictor for quality of life (QoL) after 6 months (r = − 0.4647, p = 0.0338). Systemic TLR3 negatively correlated with impaired lung function (ECMO/ECLS: r = − 0.3810, p = 0.0107) and neurological short- (RASS mean: r = 0.4474, p = 0.0023) and long-term outcome (mRS after 6 m: r = − 0.3184, p = 0.0352). Systemic IL-8 correlated with impaired lung function (ECMO/ECLS: r = 0.3784, p = 0.0161) and neurological involvement (RASS mean: r = − 0.5132, p = 0.0007). IL-6 in BAL correlated better to the clinical course than systemic IL-6. Using three multivariate regression models, we describe prediction models for local and systemic damage as well as QoL. CO-Hb mean and max were associated with higher mortality. Conclusions Our predictive models using the combination of Charlson Comorbidity Index, sex, procalcitonin, systemic TLR3 expression and IL-6 and IL-8 in BAL were able to describe a broad range of clinically relevant outcomes in patients with severe COVID-19-associated ARDS. Using these models might proof useful in risk stratification and predicting disease course in the future. Trial registration The trial was registered with the German Clinical Trials Register (Trial-ID DRKS00021522, registered 22/04/2020)
No image available