Acute and chronic hepatitis and hepatitis-related diseases such as liver failure, liver cirrhosis and hepatocellular carcinoma are among the most important causes for disabilities and death. Hepatocellular injury is due to a variety of agents including viruses, toxins, radiation, injury and drugs but also bacteria, parasites and autoimmune reactions. This volume reviews today’s knowledge about hepatitis with emphasis on comparative aspects between hepatitis in humans and animals, but also between different etiological agents. This particular viewpoint makes the book relevant for scientists from both human and veterinary medicine, gastroenterologists, pathologists, virologists and students of human and veterinary medicine.
No image available
· 2024
Das komplette Spektrum der antiinfektiösen Therapie bewährt und praxisnah: Alle relevanten Antiinfektiva, wichtige Infektionen und Erreger sowie spezielle klinische Fragestellungen.
No image available
No image available
No image available
No image available
· 2018
Abstract: The liver bears unique immune properties that support both immune tolerance and immunity, but the mechanisms responsible for clearance versus persistence of virus-infected hepatocytes remain unclear. Here, we dissect the factors determining the outcome of antiviral immunity using recombinant adenoviruses that reflect the hepatropism and hepatrophism of hepatitis viruses. We generated replication-deficient adenoviruses with equimolar expression of ovalbumin, luciferase, and green fluorescent protein driven by a strong ubiquitous cytomegalovirus (CMV) promoter (Ad-CMV-GOL) or by 100-fold weaker, yet hepatocyte-specific, transthyretin (TTR) promoter (Ad-TTR-GOL). Using in vivo bioluminescence to quantitatively and dynamically image luciferase activity, we demonstrated that Ad-TTR-GOL infection always persists, whereas Ad-CMV-GOL infection is always cleared, independent of the number of infected hepatocytes. Failure to clear Ad-TTR-GOL infection involved mechanisms acting during initiation as well as execution of antigen-specific immunity. First, hepatocyte-restricted antigen expression led to delayed and curtailed T-cell expansion--10,000-fold after Ad-CMV-GOL versus 150-fold after Ad-TTR-GOL-infection. Second, CD8 T-cells primed toward antigens selectively expressed by hepatocytes showed high PD-1/Tim-3/LAG-3/CTLA-4/CD160 expression levels similar to that seen in chronic hepatitis B. Third, Ad-TTR-GOL but not Ad-CMV-GOL-infected hepatocytes escaped being killed by effector T-cells while still inducing high PD-1/Tim-3/LAG-3/CTLA-4/CD160 expression, indicating different thresholds of T-cell receptor signaling relevant for triggering effector functions compared with exhaustion. Conclusion: Our study identifies deficits in the generation of CD8 T-cell immunity toward hepatocyte-expressed antigens and escape of infected hepatocytes expressing low viral antigen levels from effector T-cell killing as independent factors promoting viral persistence. This highlights the importance of addressing both the restauration of CD8 T-cell dysfunction and overcoming local hurdles of effector T-cell function to eliminate virus-infected hepatocytes
No image available
· 2022
Abstract: Background and aims: There is growing interest in T cell-based immune therapies for a functional cure of chronic HBV infection including check-point inhibition, T cell-targeted vaccines or TCR-grafted effector cells. All these approaches depend on recognition of HLA class I-presented viral peptides. The HBV core region 18-27 is an immunodominant target of CD8+ T cells and represents the prime target for T cell-based therapies. Here, a high-resolution analysis of the core18-27 specific CD8+ T cell and the selected escape pathways was performed. Methods: HLA class I typing and viral sequence analyses were performed for 464 patients with chronic HBV infection. HBV-specific CD8+ T-cell responses against the prototype and epitope variants were characterized by flow cytometry. Results: Consistent with promiscuous presentation of the core18-27 epitope, antigen-specific T cells were detected in patients carrying HLA-A*02:01, HLA-B*35:01, HLA-B*35:03 or HLA-B*51:01. Sequence analysis confirmed reproducible selection pressure on the core18-27 epitope in the context of these alleles. Interestingly, the selected immune escape pathways depend on the presenting HLA-class I-molecule. Although cross-reactive T cells were observed, some epitope variants achieved functional escape by impaired TCR-interaction or disturbed antigen processing. Of note, selection of epitope variants was exclusively observed in HBeAg negative HBV infection and here, detection of variants associated with significantly greater magnitude of the CD8 T cell response compared to absence of variants. Conclusion: The core18-27 epitope is highly variable and under heavy selection pressure in the context of different HLA class I-molecules. Some epitope variants showed evidence for impaired antigen processing and reduced presentation. Viruses carrying such escape substitutions will be less susceptible to CD8+ T cell responses and should be considered for T cell-based therapy strategies
No image available
· 2022
Abstract: Objectives: COVID-19 disease can be exacerbated by Aspergillus superinfection (CAPA). However, the causes of CAPA are not yet fully understood. Recently, alterations in the gut microbiome have been associated with a more complicated and severe disease course in COVID-19 patients, most likely due to immunological mechanisms. The aim of this study was to investigate a potential association between severe CAPA and alterations in the gut and bronchial microbial composition. Methods: We performed 16S rRNA gene amplicon sequencing of stool and bronchial samples from a total of 16 COVID-19 patients with CAPA and 26 patients without CAPA. All patients were admitted to the intensive care unit. Results were carefully tested for potentially confounding influences on the microbiome during hospitalization. Results: We found that late in COVID-19 disease, CAPA patients exhibited a trend towards reduced gut microbial diversity. Furthermore, late-stage patients with CAPA superinfection exhibited an increased abundance of Staphylococcus epidermidis in the gut which was not found in late non-CAPA cases or early in the disease. The analysis of bronchial samples did not yield significant results. Conclusions: This is the first study showing that alterations in the gut microbiome accompany severe CAPA and possibly influence the host's immunological response. In particular, an increase in Staphylococcus epidermidis in the intestine could be of importance
No image available
· 2023
Abstract: Persistence of hepatitis B virus (HBV) infection is due to a nuclear covalently closed circular DNA (cccDNA), generated from the virion-borne relaxed circular DNA (rcDNA) genome in a process likely involving numerous cell factors from the host DNA damage response (DDR). The HBV core protein mediates rcDNA transport to the nucleus and likely affects stability and transcriptional activity of cccDNA. Our study aimed at investigating the role of HBV core protein and its posttranslational modification (PTM) with SUMO (small ubiquitin-like modifiers) during the establishment of cccDNA. HBV core protein SUMO PTM was analyzed in His-SUMO-overexpressing cell lines. The impact of HBV core SUMOylation on association with cellular interaction partners and on the HBV life cycle was determined using SUMOylation-deficient mutants of the HBV core protein. Here, we show that the HBV core protein is posttranslationally modified by the addition of SUMO and that this modification impacts nuclear import of rcDNA. By using SUMOylation-deficient HBV core mutants, we show that SUMO modification is a prerequisite for the association with specific promyelocytic leukemia nuclear bodies (PML-NBs) and regulates the conversion of rcDNA to cccDNA. By in vitro SUMOylation of HBV core, we obtained evidence that SUMOylation triggers nucleocapsid disassembly, providing novel insights into the nuclear import process of rcDNA. HBV core protein SUMOylation and subsequent association with PML bodies in the nucleus constitute a key step in the conversion of HBV rcDNA to cccDNA and therefore a promising target for inhibiting formation of the HBV persistence reservoir
No image available
· 2021