No image available
· 2023
Abstract: Background Most cases of hereditary ichthyoses present with generalized scaling and skin dryness. However, in some cases skin involvement is restricted to particular body regions as in acral lamellar ichthyosis. Objectives We report on the genetic basis of acral ichthyosis in two families presenting with a similar phenotype. Methods Genetic testing was performed by targeted next generation sequencing and whole-exome sequencing. For identity-by-descent analysis, the parents were genotyped and data analysis was performed with the Chromosome Analysis Suite Software. RT-PCR with RNA extracted from skin samples was used to analyse the effect of variants on splicing. Results Genetic testing identified a few heterozygous variants, but only the variant in KRT2 c.1912 T > C, p.Phe638Leu segregated with the disease and remained the strongest candidate. Pairwise identity-by-descent analysis revealed no indication of family relationship. Phenylalanine 638 is the second last amino acid upstream of the termination codon in the tail of K2, and substitution to leucine is predicted as probably damaging. Assessment of the variant is difficult, in part due to the lack of crystal structures of this region. Conclusions Altogether, we show that a type of autosomal dominant acral ichthyosis is most probably caused by an amino acid substitution in the C-terminus of keratin 2
No image available
· 2023
Abstract: Autosomal recessive congenital ichthyosis (ARCI) is a non-syndromic congenital disorder of cornification characterized by abnormal scaling of the skin. The three major phenotypes are lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. ARCI is caused by biallelic mutations in ABCA12, ALOX12B, ALOXE3, CERS3, CYP4F22, NIPAL4, PNPLA1, SDR9C7, SULT2B1, and TGM1. The most severe form of ARCI, harlequin ichthyosis, is caused by mutations in ABCA12. Mutations in this gene can also lead to congenital ichthyosiform erythroderma or lamellar ichthyosis. We present a large cohort of 64 patients affected with ARCI carrying biallelic mutations in ABCA12. Our study comprises 34 novel mutations in ABCA12, expanding the mutational spectrum of ABCA12-associated ARCI up to 217 mutations. Within these we found the possible mutational hotspots c.4541G>A, p.(Arg1514His) and c.4139A>G, p.(Asn1380Ser). A correlation of the phenotype with the effect of the genetic mutation on protein function is demonstrated. Loss-of-function mutations on both alleles generally result in harlequin ichthyosis, whereas biallelic missense mutations mainly lead to CIE or LI
No image available
· 2018
Abstract: The precise classification of epidermolysis bullosa (EB) into 4 main types and more than 30 subtypes is based on the level of skin cleavage, as well as clinical and molecular features, and is crucial for early prognostication, case management, genetic counselling and prenatal or pre-implantation diagnosis. We report here the molecular pathology of 40 consecutive cases of suspected EB, which were investigated by immunofluorescence mapping (IFM) and/or by a targeted next-generation sequencing (NGS) multi-gene panel. IFM correctly established the EB subtype in 76% of cases, while the molecular pathology was completely elucidated in 90% of cases by the targeted NGS multi-gene panel. Thirteen previously unreported mutations in EB genes were identified. In cases with unclear clinical and IFM findings, mutations were found by NGS in previously unexpected genes. IFM was useful in delivering fast results in newborns, and in indicating the consequences of the variants of uncertain significance on protein level. This study underscores the efficacy of the strategy of combining targeted NGS with IFM in resolving unusual EB phenotypes. It also suggests that, despite technological advances, careful clinical evaluation and deep phenotyping remains a crucial factor that dictates successful diagnosis of EB
No image available
· 2014
Abstract: ppdb (http://ppdb.agr.gifu-u.ac.jp) is a plant promoter database that provides information on transcription start sites (TSSs), core promoter structure (TATA boxes, Initiators, Y Patches, GA and CA elements) and regulatory element groups (REGs) as putative and comprehensive transcriptional regulatory elements. Since the last report in this journal, the database has been updated in three areas to version 3.0. First, new genomes have been included in the database, and now ppdb provides information on Arabidopsis thaliana, rice, Physcomitrella patens and poplar. Second, new TSS tag data (34 million) from A. thaliana, determined by a high throughput sequencer, has been added to give a ∼200-fold increase in TSS data compared with version 1.0. This results in a much higher coverage of ∼27 000 A. thaliana genes and finer positioning of promoters even for genes with low expression levels. Third, microarray data-based predictions have been appended as REG annotations which inform their putative physiological roles
No image available
No image available
· 2021
Abstract: The autosomal recessive congenital ichthyoses (ARCI) are a nonsyndromic group of cornification disorders that includes lamellar ichthyosis, congenital ichthyosiform erythroderma, and harlequin ichthyosis. To date mutations in ten genes have been identified to cause ARCI: TGM1, ALOX12B, ALOXE3, NIPAL4, CYP4F22, ABCA12, PNPLA1, CERS3, SDR9C7, and SULT2B1. The main focus of this report is the mutational spectrum of the genes ALOX12B and ALOXE3, which encode the epidermal lipoxygenases arachidonate 12-lipoxygenase, i.e., 12R type (12R-LOX), and the epidermis-type lipoxygenase-3 (eLOX3), respectively. Deficiency of 12R-LOX and eLOX3 disrupts the epidermal barrier function and leads to an abnormal epidermal differentiation. The type and the position of the mutations may influence the ARCI phenotype; most patients present with a mild erythrodermic ichthyosis, and only few individuals show severe erythroderma. To date, 88 pathogenic mutations in ALOX12B and 27 pathogenic mutations in ALOXE3 have been reported in the literature. Here, we presented a large cohort of 224 genetically characterized ARCI patients who carried mutations in these genes. We added 74 novel mutations in ALOX12B and 25 novel mutations in ALOXE3. We investigated the spectrum of mutations in ALOX12B and ALOXE3 in our cohort and additionally in the published mutations, the distribution of these mutations within the gene and gene domains, and potential hotspots and recurrent mutations
No image available
· 2021
Abstract: Porokeratoses are a heterogeneous group of keratinization disorders. For linear porokeratosis and disseminated superficial actinic porokeratosis, a heterozygous pathogenic germline variant in a mevalonate pathway gene and a postzygotic second hit mutation present in affected skin have been shown to be the pathogenetic mechanism for the development of the lesions. However, the molecular mechanism leading to development of porokeratosis plantaris, palmaris et disseminata is not known. This study analysed a cohort of 4 patients with linear porokeratosis and 3 patients with porokeratosis plantaris, palmaris et disseminata, and performed mutation analyses of DNA extracted from blood samples and skin biopsies. All of the study patients carried the heterozygous germline variant c.70+5G>A in the MVD gene. Loss of heterozygosity due to a second hit mutation was found in affected skin of 3 patients with linear porokeratosis and 2 patients with porokeratosis plantaris, palmaris et disseminata. These results suggest that porokeratosis plantaris, palmaris et disseminata shares the same pathogenetic mechanism as other porokeratosis subtypes and belongs to the phenotypic spectrum of MVD-associated porokeratosis
No image available
· 2019
No image available