My library button
  • No image available

    We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.

  • No image available

    We present an extension of the Berenger Perfectly Matched Layer with additional terms and tunable coefficients which introduce some asymmetry in the absorption rate. We show that the discretized version of the new PML offers superior absorption rates than the discretized standard PML under a plane wave analysis. Taking advantage of the high rates of absorption of the new PML, we have devised a new strategy for introducing the technique of Mesh Refinement into electromagnetic Particle-In-Cell plasma simulations. We present the details of the algorithm as well as a 2-D example of its application to laser-plasma interaction in the context of fast ignition.

  • No image available

  • No image available

    Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation domain, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations, and present examples of application in Heavy Ion Fusion and related fields which illustrate the effectiveness of the approach. We also report on the status of a collaboration under way at Lawrence Berkeley National Laboratory between the Applied Numerical Algorithms Group (ANAG) and the Heavy Ion Fusion group to upgrade ANAG's mesh refinement library Chombo to include the tools needed by Particle-In-Cell simulation codes.

  • No image available

    Plasma simulations are often rendered challenging by the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the mesh refinement technique. We briefly discuss the challenges posed by coupling this technique with plasma Particle-In-Cell simulations and present two implementations in more detail, with examples.

  • No image available

    We present a report on ongoing activities on electron-cloud R & D for the MI upgrade. These results update and extend those presented in Refs. 1, 2. In this report we have significantly expanded the parameter range explored in bunch intensity Nb, RMS bunch length {sigma}{sub z} and peak secondary emission yield (SEY) {delta}{sub max}, but we have constrained our simulations to a field-free region. We describe the threshold behaviors in all of the above three parameters. For {delta}{sub max} {ge} 1.5 we find that, even for N{sub b} = 1 x 10{sup 11}, the electron cloud density, when averaged over the entire chamber, exceeds the beam neutralization level, but remains significantly below the local neutralization level (ie., when the electron density is computed in the neighborhood of the beam). This 'excess' of electrons is accounted for by narrow regions of high concentration of electrons very close to the chamber surface, especially at the top and bottom of the chamber, akin to virtual cathodes. These virtual cathodes are kept in equilibrium, on average, by a competition between space-charge forces (including their images) and secondary emission, a mechanism that shares some features with the space-charge saturation of the current in a diode at high fields. For N{sub b} = 3 x 10{sup 11} the electron cloud build-up growth rate and saturation density have a strong dependence on {sigma}{sub z} as {sigma}{sub z} decreases below {approx} 0.4 m, when the average electron-wall impact energy roughly reaches the energy E{sub max} where {delta} peaks. We also present improved results on emittance growth simulations of the beam obtained with the code WARP/POSINST in quasi-static mode, in which the beam-(electron cloud) interaction is lumped into N{sub s} 'stations' around the ring, where N{sub s} = 1, 2 ..., 9. The emittance shows a rapid growth of {approx} 20% during the first {approx} 100 turns, followed by a much slower growth rate of {approx} 0.03%/turn. Concerning the electron cloud detection technique using microwave transmission, we present an improved dispersion relation for the TE mode of the microwaves, and a corresponding analytic estimate of the phase shift.

  • No image available

    We have developed a new, comprehensive set of simulation tools aimed at modeling the interaction of intense ion beams and electron clouds (e-clouds). The set contains the 3-D accelerator PIC codeWARP and the 2-D ''slice'' ecloud code POSINST, as well as a merger of the two, augmented by new modules for impact ionization and neutral gas generation. The new capability runs on workstations or parallel supercomputers and contains advanced features such as mesh refinement, disparate adaptive time stepping, and a new ''drift-Lorentz'' particle mover for tracking charged particles in magnetic fields using large time steps. It is being applied to the modeling of ion beams (1 MeV, 180 mA, K+) for heavy ion inertial fusion and warm dense matter studies, as they interact with electron clouds in the High-Current Experiment (HCX). In earlier papers, we described the capabilities and presented recent simulation results with detailed comparisons against the HCX experiment, as well as their application (in a different regime) to the modeling of e-clouds in the Large Hadron Collider (LHC). We concentrate here on the description of the implementation of the ''quasi-static'' mode of operation, for comparison with other codes, and introduce a new consideration on the estimate of computing time between the quasi-static and the fully self-consistent modes.

  • No image available

  • No image available

    A set of experiments has been performed on the High-Current Experiment (HCX) facility at LBNL, in which the ion beam is allowed to collide with an end plate and thereby induce a copious supply of desorbed electrons. Through the use of combinations of biased and grounded electrodes positioned in between and downstream of the quadrupole magnets, the flow of electrons upstream into the magnets can be turned on or off. Properties of the resultant ion beam are measured under each condition. The experiment is modeled via a full three-dimensional, two species (electron and ion) particle simulation, as well as via reduced simulations (ions with appropriately chosen model electron cloud distributions, and a high-resolution simulation of the region adjacent to the end plate). The three-dimensional simulations are the first of their kind and the first to make use of a timestep-acceleration scheme that allows the electrons to be advanced with a timestep that is not small compared to the highest electron cyclotron period. The simulations reproduce qualitative aspects of the experiments, illustrate some unanticipated physical effects, and serve as an important demonstration of a developing simulation capability.

  • No image available

    As the beam propagates in the University of Maryland Electron Ring (UMER) complex transverse density structure including halos has been observed. A primary objective of the experiment is to understand the evolution of a space-charge-dominated beam as it propagates over a substantial distance. It is therefore important to understand which details of the beam structure result from propagation of the beam in the ring and which characteristics result from the specific details of the initial distribution. Detailed measurements of the initial beam characteristics have therefore been performed. These include direct measurement of the density using a phosphor screen, as well as pepper pot measurements of the initial transverse distribution function. Detailed measurements of the distribution function have also been obtained by scanning a pinhole aperture across a beam diameter, and recording phosphor screen pictures of the beam downstream of the pinhole. Simulations of the beam characteristics in the gun region have also been performed using the WARP P.I.C. code. From these simulations, the observed behavior has been attributed to a combination of perturbations to the transverse distribution by a cathode grid that is used to modulate the beam current, as well as the complex transverse dynamics that results from the combination of the nonlinear external focusing fields of the gun structure and the nonlinear space charge forces.